{-# LANGUAGE CPP #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE PolyKinds #-}
#include "lens-common.h"
module Control.Lens.Tuple
(
Field1(..)
, Field2(..)
, Field3(..)
, Field4(..)
, Field5(..)
, Field6(..)
, Field7(..)
, Field8(..)
, Field9(..)
, Field10(..)
, Field11(..)
, Field12(..)
, Field13(..)
, Field14(..)
, Field15(..)
, Field16(..)
, Field17(..)
, Field18(..)
, Field19(..)
, _1', _2', _3', _4', _5', _6', _7', _8', _9'
, _10', _11', _12', _13', _14', _15', _16'
, _17', _18', _19'
) where
import Prelude ()
import Control.Lens.Lens
import Control.Lens.Internal.Prelude
import Data.Functor.Product (Product (..))
import Data.Kind
import Data.Strict (Pair (..))
import GHC.Generics ((:*:) (..), Generic (..), K1 (..),
M1 (..), U1 (..))
class Field1 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_1 :: Lens s t a b
default _1 :: (Generic s, Generic t, GIxed N0 (Rep s) (Rep t) a b)
=> Lens s t a b
_1 = Proxy N0 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N0
proxyN0
{-# INLINE _1 #-}
instance Field1 (Identity a) (Identity b) a b where
_1 :: Lens (Identity a) (Identity b) a b
_1 a -> f b
f (Identity a
a) = b -> Identity b
forall a. a -> Identity a
Identity (b -> Identity b) -> f b -> f (Identity b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
instance Field1 (Product f g a) (Product f' g a) (f a) (f' a) where
_1 :: Lens (Product f g a) (Product f' g a) (f a) (f' a)
_1 f a -> f (f' a)
f (Pair f a
a g a
b) = (f' a -> g a -> Product f' g a) -> g a -> f' a -> Product f' g a
forall a b c. (a -> b -> c) -> b -> a -> c
flip f' a -> g a -> Product f' g a
forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair g a
b (f' a -> Product f' g a) -> f (f' a) -> f (Product f' g a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a -> f (f' a)
f f a
a
instance Field1 ((f :*: g) p) ((f' :*: g) p) (f p) (f' p) where
_1 :: Lens ((:*:) f g p) ((:*:) f' g p) (f p) (f' p)
_1 f p -> f (f' p)
f (f p
l :*: g p
r) = (f' p -> g p -> (:*:) f' g p
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: g p
r) (f' p -> (:*:) f' g p) -> f (f' p) -> f ((:*:) f' g p)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f p -> f (f' p)
f f p
l
instance Field1 (Pair a b) (Pair a' b) a a' where
_1 :: Lens (Pair a b) (Pair a' b) a a'
_1 a -> f a'
f (a
a :!: b
b) = (a' -> b -> Pair a' b
forall a b. a -> b -> Pair a b
:!: b
b) (a' -> Pair a' b) -> f a' -> f (Pair a' b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f a'
f a
a
instance Field1 (a,b) (a',b) a a' where
_1 :: Lens (a, b) (a', b) a a'
_1 a -> f a'
k ~(a
a,b
b) = a -> f a'
k a
a f a' -> (a' -> (a', b)) -> f (a', b)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b)
{-# INLINE _1 #-}
instance Field1 (a,b,c) (a',b,c) a a' where
_1 :: Lens (a, b, c) (a', b, c) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c) = a -> f a'
k a
a f a' -> (a' -> (a', b, c)) -> f (a', b, c)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d) (a',b,c,d) a a' where
_1 :: Lens (a, b, c, d) (a', b, c, d) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d) = a -> f a'
k a
a f a' -> (a' -> (a', b, c, d)) -> f (a', b, c, d)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e) (a',b,c,d,e) a a' where
_1 :: Lens (a, b, c, d, e) (a', b, c, d, e) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e) = a -> f a'
k a
a f a' -> (a' -> (a', b, c, d, e)) -> f (a', b, c, d, e)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f) (a',b,c,d,e,f) a a' where
_1 :: Lens (a, b, c, d, e, f) (a', b, c, d, e, f) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) = a -> f a'
k a
a f a' -> (a' -> (a', b, c, d, e, f)) -> f (a', b, c, d, e, f)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g) (a',b,c,d,e,f,g) a a' where
_1 :: Lens (a, b, c, d, e, f, g) (a', b, c, d, e, f, g) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) = a -> f a'
k a
a f a' -> (a' -> (a', b, c, d, e, f, g)) -> f (a', b, c, d, e, f, g)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h) (a',b,c,d,e,f,g,h) a a' where
_1 :: Lens (a, b, c, d, e, f, g, h) (a', b, c, d, e, f, g, h) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = a -> f a'
k a
a f a'
-> (a' -> (a', b, c, d, e, f, g, h)) -> f (a', b, c, d, e, f, g, h)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i) (a',b,c,d,e,f,g,h,i) a a' where
_1 :: Lens (a, b, c, d, e, f, g, h, i) (a', b, c, d, e, f, g, h, i) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = a -> f a'
k a
a f a'
-> (a' -> (a', b, c, d, e, f, g, h, i))
-> f (a', b, c, d, e, f, g, h, i)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j) (a',b,c,d,e,f,g,h,i,j) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a', b, c, d, e, f, g, h, i, j) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = a -> f a'
k a
a f a'
-> (a' -> (a', b, c, d, e, f, g, h, i, j))
-> f (a', b, c, d, e, f, g, h, i, j)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk) (a',b,c,d,e,f,g,h,i,j,kk) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a', b, c, d, e, f, g, h, i, j, kk)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = a -> f a'
k a
a f a'
-> (a' -> (a', b, c, d, e, f, g, h, i, j, kk))
-> f (a', b, c, d, e, f, g, h, i, j, kk)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l) (a',b,c,d,e,f,g,h,i,j,kk,l) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a', b, c, d, e, f, g, h, i, j, kk, l)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = a -> f a'
k a
a f a'
-> (a' -> (a', b, c, d, e, f, g, h, i, j, kk, l))
-> f (a', b, c, d, e, f, g, h, i, j, kk, l)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a',b,c,d,e,f,g,h,i,j,kk,l,m) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a', b, c, d, e, f, g, h, i, j, kk, l, m)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = a -> f a'
k a
a f a'
-> (a' -> (a', b, c, d, e, f, g, h, i, j, kk, l, m))
-> f (a', b, c, d, e, f, g, h, i, j, kk, l, m)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a',b,c,d,e,f,g,h,i,j,kk,l,m,n) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a', b, c, d, e, f, g, h, i, j, kk, l, m, n)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = a -> f a'
k a
a f a'
-> (a' -> (a', b, c, d, e, f, g, h, i, j, kk, l, m, n))
-> f (a', b, c, d, e, f, g, h, i, j, kk, l, m, n)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a',b,c,d,e,f,g,h,i,j,kk,l,m,n,o) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = a -> f a'
k a
a f a'
-> (a' -> (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o))
-> f (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a',b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = a -> f a'
k a
a f a'
-> (a' -> (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p))
-> f (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a',b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = a -> f a'
k a
a f a'
-> (a' -> (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q))
-> f (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a',b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = a -> f a'
k a
a f a'
-> (a' -> (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r))
-> f (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a',b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = a -> f a'
k a
a f a'
-> (a'
-> (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s))
-> f (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _1 #-}
class Field2 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_2 :: Lens s t a b
default _2 :: (Generic s, Generic t, GIxed N1 (Rep s) (Rep t) a b)
=> Lens s t a b
_2 = Proxy N1 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N1
proxyN1
{-# INLINE _2 #-}
instance Field2 (Product f g a) (Product f g' a) (g a) (g' a) where
_2 :: Lens (Product f g a) (Product f g' a) (g a) (g' a)
_2 g a -> f (g' a)
f (Pair f a
a g a
b) = f a -> g' a -> Product f g' a
forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair f a
a (g' a -> Product f g' a) -> f (g' a) -> f (Product f g' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> g a -> f (g' a)
f g a
b
instance Field2 ((f :*: g) p) ((f :*: g') p) (g p) (g' p) where
_2 :: Lens ((:*:) f g p) ((:*:) f g' p) (g p) (g' p)
_2 g p -> f (g' p)
f (f p
l :*: g p
r) = (f p
l f p -> g' p -> (:*:) f g' p
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*:) (g' p -> (:*:) f g' p) -> f (g' p) -> f ((:*:) f g' p)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> g p -> f (g' p)
f g p
r
instance Field2 (Pair a b) (Pair a b') b b' where
_2 :: Lens (Pair a b) (Pair a b') b b'
_2 b -> f b'
f (a
a :!: b
b) = (a
a a -> b' -> Pair a b'
forall a b. a -> b -> Pair a b
:!:) (b' -> Pair a b') -> f b' -> f (Pair a b')
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> b -> f b'
f b
b
instance Field2 (a,b) (a,b') b b' where
_2 :: Lens (a, b) (a, b') b b'
_2 b -> f b'
k ~(a
a,b
b) = b -> f b'
k b
b f b' -> (b' -> (a, b')) -> f (a, b')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b')
{-# INLINE _2 #-}
instance Field2 (a,b,c) (a,b',c) b b' where
_2 :: Lens (a, b, c) (a, b', c) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c) = b -> f b'
k b
b f b' -> (b' -> (a, b', c)) -> f (a, b', c)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d) (a,b',c,d) b b' where
_2 :: Lens (a, b, c, d) (a, b', c, d) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d) = b -> f b'
k b
b f b' -> (b' -> (a, b', c, d)) -> f (a, b', c, d)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e) (a,b',c,d,e) b b' where
_2 :: Lens (a, b, c, d, e) (a, b', c, d, e) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e) = b -> f b'
k b
b f b' -> (b' -> (a, b', c, d, e)) -> f (a, b', c, d, e)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f) (a,b',c,d,e,f) b b' where
_2 :: Lens (a, b, c, d, e, f) (a, b', c, d, e, f) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) = b -> f b'
k b
b f b' -> (b' -> (a, b', c, d, e, f)) -> f (a, b', c, d, e, f)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g) (a,b',c,d,e,f,g) b b' where
_2 :: Lens (a, b, c, d, e, f, g) (a, b', c, d, e, f, g) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) = b -> f b'
k b
b f b' -> (b' -> (a, b', c, d, e, f, g)) -> f (a, b', c, d, e, f, g)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h) (a,b',c,d,e,f,g,h) b b' where
_2 :: Lens (a, b, c, d, e, f, g, h) (a, b', c, d, e, f, g, h) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = b -> f b'
k b
b f b'
-> (b' -> (a, b', c, d, e, f, g, h)) -> f (a, b', c, d, e, f, g, h)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i) (a,b',c,d,e,f,g,h,i) b b' where
_2 :: Lens (a, b, c, d, e, f, g, h, i) (a, b', c, d, e, f, g, h, i) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = b -> f b'
k b
b f b'
-> (b' -> (a, b', c, d, e, f, g, h, i))
-> f (a, b', c, d, e, f, g, h, i)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j) (a,b',c,d,e,f,g,h,i,j) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b', c, d, e, f, g, h, i, j) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = b -> f b'
k b
b f b'
-> (b' -> (a, b', c, d, e, f, g, h, i, j))
-> f (a, b', c, d, e, f, g, h, i, j)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk) (a,b',c,d,e,f,g,h,i,j,kk) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b', c, d, e, f, g, h, i, j, kk)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = b -> f b'
k b
b f b'
-> (b' -> (a, b', c, d, e, f, g, h, i, j, kk))
-> f (a, b', c, d, e, f, g, h, i, j, kk)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b',c,d,e,f,g,h,i,j,kk,l) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b', c, d, e, f, g, h, i, j, kk, l)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = b -> f b'
k b
b f b'
-> (b' -> (a, b', c, d, e, f, g, h, i, j, kk, l))
-> f (a, b', c, d, e, f, g, h, i, j, kk, l)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b',c,d,e,f,g,h,i,j,kk,l,m) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b', c, d, e, f, g, h, i, j, kk, l, m)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = b -> f b'
k b
b f b'
-> (b' -> (a, b', c, d, e, f, g, h, i, j, kk, l, m))
-> f (a, b', c, d, e, f, g, h, i, j, kk, l, m)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b',c,d,e,f,g,h,i,j,kk,l,m,n) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b', c, d, e, f, g, h, i, j, kk, l, m, n)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = b -> f b'
k b
b f b'
-> (b' -> (a, b', c, d, e, f, g, h, i, j, kk, l, m, n))
-> f (a, b', c, d, e, f, g, h, i, j, kk, l, m, n)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b',c,d,e,f,g,h,i,j,kk,l,m,n,o) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = b -> f b'
k b
b f b'
-> (b' -> (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o))
-> f (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b',c,d,e,f,g,h,i,j,kk,l,m,n,o,p) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = b -> f b'
k b
b f b'
-> (b' -> (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p))
-> f (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b',c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = b -> f b'
k b
b f b'
-> (b' -> (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q))
-> f (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b',c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = b -> f b'
k b
b f b'
-> (b' -> (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r))
-> f (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b',c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = b -> f b'
k b
b f b'
-> (b'
-> (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s))
-> f (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _2 #-}
class Field3 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_3 :: Lens s t a b
default _3 :: (Generic s, Generic t, GIxed N2 (Rep s) (Rep t) a b)
=> Lens s t a b
_3 = Proxy N2 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N2
proxyN2
{-# INLINE _3 #-}
instance Field3 (a,b,c) (a,b,c') c c' where
_3 :: Lens (a, b, c) (a, b, c') c c'
_3 c -> f c'
k ~(a
a,b
b,c
c) = c -> f c'
k c
c f c' -> (c' -> (a, b, c')) -> f (a, b, c')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c')
{-# INLINE _3 #-}
instance Field3 (a,b,c,d) (a,b,c',d) c c' where
_3 :: Lens (a, b, c, d) (a, b, c', d) c c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d) = c -> f c'
k c
c f c' -> (c' -> (a, b, c', d)) -> f (a, b, c', d)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e) (a,b,c',d,e) c c' where
_3 :: Lens (a, b, c, d, e) (a, b, c', d, e) c c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e) = c -> f c'
k c
c f c' -> (c' -> (a, b, c', d, e)) -> f (a, b, c', d, e)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f) (a,b,c',d,e,f) c c' where
_3 :: Lens (a, b, c, d, e, f) (a, b, c', d, e, f) c c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) = c -> f c'
k c
c f c' -> (c' -> (a, b, c', d, e, f)) -> f (a, b, c', d, e, f)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g) (a,b,c',d,e,f,g) c c' where
_3 :: Lens (a, b, c, d, e, f, g) (a, b, c', d, e, f, g) c c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) = c -> f c'
k c
c f c' -> (c' -> (a, b, c', d, e, f, g)) -> f (a, b, c', d, e, f, g)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h) (a,b,c',d,e,f,g,h) c c' where
_3 :: Lens (a, b, c, d, e, f, g, h) (a, b, c', d, e, f, g, h) c c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = c -> f c'
k c
c f c'
-> (c' -> (a, b, c', d, e, f, g, h)) -> f (a, b, c', d, e, f, g, h)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i) (a,b,c',d,e,f,g,h,i) c c' where
_3 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c', d, e, f, g, h, i) c c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = c -> f c'
k c
c f c'
-> (c' -> (a, b, c', d, e, f, g, h, i))
-> f (a, b, c', d, e, f, g, h, i)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j) (a,b,c',d,e,f,g,h,i,j) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c', d, e, f, g, h, i, j) c c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = c -> f c'
k c
c f c'
-> (c' -> (a, b, c', d, e, f, g, h, i, j))
-> f (a, b, c', d, e, f, g, h, i, j)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c',d,e,f,g,h,i,j,kk) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c', d, e, f, g, h, i, j, kk)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = c -> f c'
k c
c f c'
-> (c' -> (a, b, c', d, e, f, g, h, i, j, kk))
-> f (a, b, c', d, e, f, g, h, i, j, kk)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c',d,e,f,g,h,i,j,kk,l) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c', d, e, f, g, h, i, j, kk, l)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = c -> f c'
k c
c f c'
-> (c' -> (a, b, c', d, e, f, g, h, i, j, kk, l))
-> f (a, b, c', d, e, f, g, h, i, j, kk, l)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c',d,e,f,g,h,i,j,kk,l,m) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c', d, e, f, g, h, i, j, kk, l, m)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = c -> f c'
k c
c f c'
-> (c' -> (a, b, c', d, e, f, g, h, i, j, kk, l, m))
-> f (a, b, c', d, e, f, g, h, i, j, kk, l, m)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c',d,e,f,g,h,i,j,kk,l,m,n) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c', d, e, f, g, h, i, j, kk, l, m, n)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = c -> f c'
k c
c f c'
-> (c' -> (a, b, c', d, e, f, g, h, i, j, kk, l, m, n))
-> f (a, b, c', d, e, f, g, h, i, j, kk, l, m, n)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c',d,e,f,g,h,i,j,kk,l,m,n,o) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = c -> f c'
k c
c f c'
-> (c' -> (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o))
-> f (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c',d,e,f,g,h,i,j,kk,l,m,n,o,p) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = c -> f c'
k c
c f c'
-> (c' -> (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p))
-> f (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c',d,e,f,g,h,i,j,kk,l,m,n,o,p,q) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = c -> f c'
k c
c f c'
-> (c' -> (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q))
-> f (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c',d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = c -> f c'
k c
c f c'
-> (c' -> (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r))
-> f (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c',d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = c -> f c'
k c
c f c'
-> (c'
-> (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s))
-> f (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _3 #-}
class Field4 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_4 :: Lens s t a b
default _4 :: (Generic s, Generic t, GIxed N3 (Rep s) (Rep t) a b)
=> Lens s t a b
_4 = Proxy N3 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N3
proxyN3
{-# INLINE _4 #-}
instance Field4 (a,b,c,d) (a,b,c,d') d d' where
_4 :: Lens (a, b, c, d) (a, b, c, d') d d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d) = d -> f d'
k d
d f d' -> (d' -> (a, b, c, d')) -> f (a, b, c, d')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d')
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e) (a,b,c,d',e) d d' where
_4 :: Lens (a, b, c, d, e) (a, b, c, d', e) d d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e) = d -> f d'
k d
d f d' -> (d' -> (a, b, c, d', e)) -> f (a, b, c, d', e)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f) (a,b,c,d',e,f) d d' where
_4 :: Lens (a, b, c, d, e, f) (a, b, c, d', e, f) d d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) = d -> f d'
k d
d f d' -> (d' -> (a, b, c, d', e, f)) -> f (a, b, c, d', e, f)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g) (a,b,c,d',e,f,g) d d' where
_4 :: Lens (a, b, c, d, e, f, g) (a, b, c, d', e, f, g) d d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) = d -> f d'
k d
d f d' -> (d' -> (a, b, c, d', e, f, g)) -> f (a, b, c, d', e, f, g)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h) (a,b,c,d',e,f,g,h) d d' where
_4 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d', e, f, g, h) d d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = d -> f d'
k d
d f d'
-> (d' -> (a, b, c, d', e, f, g, h)) -> f (a, b, c, d', e, f, g, h)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i) (a,b,c,d',e,f,g,h,i) d d' where
_4 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d', e, f, g, h, i) d d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = d -> f d'
k d
d f d'
-> (d' -> (a, b, c, d', e, f, g, h, i))
-> f (a, b, c, d', e, f, g, h, i)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j) (a,b,c,d',e,f,g,h,i,j) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c, d', e, f, g, h, i, j) d d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = d -> f d'
k d
d f d'
-> (d' -> (a, b, c, d', e, f, g, h, i, j))
-> f (a, b, c, d', e, f, g, h, i, j)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d',e,f,g,h,i,j,kk) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d', e, f, g, h, i, j, kk)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = d -> f d'
k d
d f d'
-> (d' -> (a, b, c, d', e, f, g, h, i, j, kk))
-> f (a, b, c, d', e, f, g, h, i, j, kk)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d',e,f,g,h,i,j,kk,l) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d', e, f, g, h, i, j, kk, l)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = d -> f d'
k d
d f d'
-> (d' -> (a, b, c, d', e, f, g, h, i, j, kk, l))
-> f (a, b, c, d', e, f, g, h, i, j, kk, l)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d',e,f,g,h,i,j,kk,l,m) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d', e, f, g, h, i, j, kk, l, m)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = d -> f d'
k d
d f d'
-> (d' -> (a, b, c, d', e, f, g, h, i, j, kk, l, m))
-> f (a, b, c, d', e, f, g, h, i, j, kk, l, m)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d',e,f,g,h,i,j,kk,l,m,n) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d', e, f, g, h, i, j, kk, l, m, n)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = d -> f d'
k d
d f d'
-> (d' -> (a, b, c, d', e, f, g, h, i, j, kk, l, m, n))
-> f (a, b, c, d', e, f, g, h, i, j, kk, l, m, n)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d',e,f,g,h,i,j,kk,l,m,n,o) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = d -> f d'
k d
d f d'
-> (d' -> (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o))
-> f (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d',e,f,g,h,i,j,kk,l,m,n,o,p) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = d -> f d'
k d
d f d'
-> (d' -> (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p))
-> f (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d',e,f,g,h,i,j,kk,l,m,n,o,p,q) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = d -> f d'
k d
d f d'
-> (d' -> (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q))
-> f (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d',e,f,g,h,i,j,kk,l,m,n,o,p,q,r) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = d -> f d'
k d
d f d'
-> (d' -> (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r))
-> f (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d',e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = d -> f d'
k d
d f d'
-> (d'
-> (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s))
-> f (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _4 #-}
class Field5 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_5 :: Lens s t a b
default _5 :: (Generic s, Generic t, GIxed N4 (Rep s) (Rep t) a b)
=> Lens s t a b
_5 = Proxy N4 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N4
proxyN4
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e) (a,b,c,d,e') e e' where
_5 :: Lens (a, b, c, d, e) (a, b, c, d, e') e e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e) = e -> f e'
k e
e f e' -> (e' -> (a, b, c, d, e')) -> f (a, b, c, d, e')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e')
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f) (a,b,c,d,e',f) e e' where
_5 :: Lens (a, b, c, d, e, f) (a, b, c, d, e', f) e e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) = e -> f e'
k e
e f e' -> (e' -> (a, b, c, d, e', f)) -> f (a, b, c, d, e', f)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g) (a,b,c,d,e',f,g) e e' where
_5 :: Lens (a, b, c, d, e, f, g) (a, b, c, d, e', f, g) e e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) = e -> f e'
k e
e f e' -> (e' -> (a, b, c, d, e', f, g)) -> f (a, b, c, d, e', f, g)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h) (a,b,c,d,e',f,g,h) e e' where
_5 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e', f, g, h) e e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = e -> f e'
k e
e f e'
-> (e' -> (a, b, c, d, e', f, g, h)) -> f (a, b, c, d, e', f, g, h)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e',f,g,h,i) e e' where
_5 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e', f, g, h, i) e e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = e -> f e'
k e
e f e'
-> (e' -> (a, b, c, d, e', f, g, h, i))
-> f (a, b, c, d, e', f, g, h, i)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j) (a,b,c,d,e',f,g,h,i,j) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e', f, g, h, i, j) e e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = e -> f e'
k e
e f e'
-> (e' -> (a, b, c, d, e', f, g, h, i, j))
-> f (a, b, c, d, e', f, g, h, i, j)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d,e',f,g,h,i,j,kk) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d, e', f, g, h, i, j, kk)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = e -> f e'
k e
e f e'
-> (e' -> (a, b, c, d, e', f, g, h, i, j, kk))
-> f (a, b, c, d, e', f, g, h, i, j, kk)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e',f,g,h,i,j,kk,l) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e', f, g, h, i, j, kk, l)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = e -> f e'
k e
e f e'
-> (e' -> (a, b, c, d, e', f, g, h, i, j, kk, l))
-> f (a, b, c, d, e', f, g, h, i, j, kk, l)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e',f,g,h,i,j,kk,l,m) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e', f, g, h, i, j, kk, l, m)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = e -> f e'
k e
e f e'
-> (e' -> (a, b, c, d, e', f, g, h, i, j, kk, l, m))
-> f (a, b, c, d, e', f, g, h, i, j, kk, l, m)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e',f,g,h,i,j,kk,l,m,n) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e', f, g, h, i, j, kk, l, m, n)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = e -> f e'
k e
e f e'
-> (e' -> (a, b, c, d, e', f, g, h, i, j, kk, l, m, n))
-> f (a, b, c, d, e', f, g, h, i, j, kk, l, m, n)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e',f,g,h,i,j,kk,l,m,n,o) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = e -> f e'
k e
e f e'
-> (e' -> (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o))
-> f (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e',f,g,h,i,j,kk,l,m,n,o,p) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = e -> f e'
k e
e f e'
-> (e' -> (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p))
-> f (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e',f,g,h,i,j,kk,l,m,n,o,p,q) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = e -> f e'
k e
e f e'
-> (e' -> (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q))
-> f (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e',f,g,h,i,j,kk,l,m,n,o,p,q,r) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = e -> f e'
k e
e f e'
-> (e' -> (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r))
-> f (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e',f,g,h,i,j,kk,l,m,n,o,p,q,r,s) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = e -> f e'
k e
e f e'
-> (e'
-> (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r, s))
-> f (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _5 #-}
class Field6 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_6 :: Lens s t a b
default _6 :: (Generic s, Generic t, GIxed N5 (Rep s) (Rep t) a b)
=> Lens s t a b
_6 = Proxy N5 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N5
proxyN5
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f) (a,b,c,d,e,f') f f' where
_6 :: Lens (a, b, c, d, e, f) (a, b, c, d, e, f') f f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) = f -> f f'
k f
f f f' -> (f' -> (a, b, c, d, e, f')) -> f (a, b, c, d, e, f')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f')
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g) (a,b,c,d,e,f',g) f f' where
_6 :: Lens (a, b, c, d, e, f, g) (a, b, c, d, e, f', g) f f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) = f -> f f'
k f
f f f' -> (f' -> (a, b, c, d, e, f', g)) -> f (a, b, c, d, e, f', g)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h) (a,b,c,d,e,f',g,h) f f' where
_6 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e, f', g, h) f f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = f -> f f'
k f
f f f'
-> (f' -> (a, b, c, d, e, f', g, h)) -> f (a, b, c, d, e, f', g, h)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f',g,h,i) f f' where
_6 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f', g, h, i) f f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = f -> f f'
k f
f f f'
-> (f' -> (a, b, c, d, e, f', g, h, i))
-> f (a, b, c, d, e, f', g, h, i)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j) (a,b,c,d,e,f',g,h,i,j) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f', g, h, i, j) f f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = f -> f f'
k f
f f f'
-> (f' -> (a, b, c, d, e, f', g, h, i, j))
-> f (a, b, c, d, e, f', g, h, i, j)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d,e,f',g,h,i,j,kk) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d, e, f', g, h, i, j, kk)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = f -> f f'
k f
f f f'
-> (f' -> (a, b, c, d, e, f', g, h, i, j, kk))
-> f (a, b, c, d, e, f', g, h, i, j, kk)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e,f',g,h,i,j,kk,l) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e, f', g, h, i, j, kk, l)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = f -> f f'
k f
f f f'
-> (f' -> (a, b, c, d, e, f', g, h, i, j, kk, l))
-> f (a, b, c, d, e, f', g, h, i, j, kk, l)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f',g,h,i,j,kk,l,m) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f', g, h, i, j, kk, l, m)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = f -> f f'
k f
f f f'
-> (f' -> (a, b, c, d, e, f', g, h, i, j, kk, l, m))
-> f (a, b, c, d, e, f', g, h, i, j, kk, l, m)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f',g,h,i,j,kk,l,m,n) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f', g, h, i, j, kk, l, m, n)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = f -> f f'
k f
f f f'
-> (f' -> (a, b, c, d, e, f', g, h, i, j, kk, l, m, n))
-> f (a, b, c, d, e, f', g, h, i, j, kk, l, m, n)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f',g,h,i,j,kk,l,m,n,o) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = f -> f f'
k f
f f f'
-> (f' -> (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o))
-> f (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f',g,h,i,j,kk,l,m,n,o,p) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = f -> f f'
k f
f f f'
-> (f' -> (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p))
-> f (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f',g,h,i,j,kk,l,m,n,o,p,q) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = f -> f f'
k f
f f f'
-> (f' -> (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q))
-> f (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f',g,h,i,j,kk,l,m,n,o,p,q,r) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = f -> f f'
k f
f f f'
-> (f' -> (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r))
-> f (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f',g,h,i,j,kk,l,m,n,o,p,q,r,s) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r, s)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = f -> f f'
k f
f f f'
-> (f'
-> (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r, s))
-> f (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _6 #-}
class Field7 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_7 :: Lens s t a b
default _7 :: (Generic s, Generic t, GIxed N6 (Rep s) (Rep t) a b)
=> Lens s t a b
_7 = Proxy N6 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N6
proxyN6
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g) (a,b,c,d,e,f,g') g g' where
_7 :: Lens (a, b, c, d, e, f, g) (a, b, c, d, e, f, g') g g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) = g -> f g'
k g
g f g' -> (g' -> (a, b, c, d, e, f, g')) -> f (a, b, c, d, e, f, g')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g')
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h) (a,b,c,d,e,f,g',h) g g' where
_7 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g', h) g g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = g -> f g'
k g
g f g'
-> (g' -> (a, b, c, d, e, f, g', h)) -> f (a, b, c, d, e, f, g', h)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f,g',h,i) g g' where
_7 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g', h, i) g g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = g -> f g'
k g
g f g'
-> (g' -> (a, b, c, d, e, f, g', h, i))
-> f (a, b, c, d, e, f, g', h, i)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j) (a,b,c,d,e,f,g',h,i,j) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g', h, i, j) g g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = g -> f g'
k g
g f g'
-> (g' -> (a, b, c, d, e, f, g', h, i, j))
-> f (a, b, c, d, e, f, g', h, i, j)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d,e,f,g',h,i,j,kk) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d, e, f, g', h, i, j, kk)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = g -> f g'
k g
g f g'
-> (g' -> (a, b, c, d, e, f, g', h, i, j, kk))
-> f (a, b, c, d, e, f, g', h, i, j, kk)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e,f,g',h,i,j,kk,l) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e, f, g', h, i, j, kk, l)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = g -> f g'
k g
g f g'
-> (g' -> (a, b, c, d, e, f, g', h, i, j, kk, l))
-> f (a, b, c, d, e, f, g', h, i, j, kk, l)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f,g',h,i,j,kk,l,m) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f, g', h, i, j, kk, l, m)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = g -> f g'
k g
g f g'
-> (g' -> (a, b, c, d, e, f, g', h, i, j, kk, l, m))
-> f (a, b, c, d, e, f, g', h, i, j, kk, l, m)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g',h,i,j,kk,l,m,n) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g', h, i, j, kk, l, m, n)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = g -> f g'
k g
g f g'
-> (g' -> (a, b, c, d, e, f, g', h, i, j, kk, l, m, n))
-> f (a, b, c, d, e, f, g', h, i, j, kk, l, m, n)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g',h,i,j,kk,l,m,n,o) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = g -> f g'
k g
g f g'
-> (g' -> (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o))
-> f (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g',h,i,j,kk,l,m,n,o,p) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = g -> f g'
k g
g f g'
-> (g' -> (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p))
-> f (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g',h,i,j,kk,l,m,n,o,p,q) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = g -> f g'
k g
g f g'
-> (g' -> (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q))
-> f (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g',h,i,j,kk,l,m,n,o,p,q,r) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = g -> f g'
k g
g f g'
-> (g' -> (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r))
-> f (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g',h,i,j,kk,l,m,n,o,p,q,r,s) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r, s)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = g -> f g'
k g
g f g'
-> (g'
-> (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r, s))
-> f (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _7 #-}
class Field8 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_8 :: Lens s t a b
default _8 :: (Generic s, Generic t, GIxed N7 (Rep s) (Rep t) a b)
=> Lens s t a b
_8 = Proxy N7 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N7
proxyN7
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h) (a,b,c,d,e,f,g,h') h h' where
_8 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g, h') h h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = h -> f h'
k h
h f h'
-> (h' -> (a, b, c, d, e, f, g, h')) -> f (a, b, c, d, e, f, g, h')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h')
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f,g,h',i) h h' where
_8 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h', i) h h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = h -> f h'
k h
h f h'
-> (h' -> (a, b, c, d, e, f, g, h', i))
-> f (a, b, c, d, e, f, g, h', i)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j) (a,b,c,d,e,f,g,h',i,j) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h', i, j) h h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = h -> f h'
k h
h f h'
-> (h' -> (a, b, c, d, e, f, g, h', i, j))
-> f (a, b, c, d, e, f, g, h', i, j)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d,e,f,g,h',i,j,kk) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d, e, f, g, h', i, j, kk)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = h -> f h'
k h
h f h'
-> (h' -> (a, b, c, d, e, f, g, h', i, j, kk))
-> f (a, b, c, d, e, f, g, h', i, j, kk)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e,f,g,h',i,j,kk,l) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e, f, g, h', i, j, kk, l)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = h -> f h'
k h
h f h'
-> (h' -> (a, b, c, d, e, f, g, h', i, j, kk, l))
-> f (a, b, c, d, e, f, g, h', i, j, kk, l)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f,g,h',i,j,kk,l,m) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f, g, h', i, j, kk, l, m)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = h -> f h'
k h
h f h'
-> (h' -> (a, b, c, d, e, f, g, h', i, j, kk, l, m))
-> f (a, b, c, d, e, f, g, h', i, j, kk, l, m)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g,h',i,j,kk,l,m,n) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g, h', i, j, kk, l, m, n)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = h -> f h'
k h
h f h'
-> (h' -> (a, b, c, d, e, f, g, h', i, j, kk, l, m, n))
-> f (a, b, c, d, e, f, g, h', i, j, kk, l, m, n)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h',i,j,kk,l,m,n,o) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = h -> f h'
k h
h f h'
-> (h' -> (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o))
-> f (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h',i,j,kk,l,m,n,o,p) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = h -> f h'
k h
h f h'
-> (h' -> (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p))
-> f (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h',i,j,kk,l,m,n,o,p,q) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = h -> f h'
k h
h f h'
-> (h' -> (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q))
-> f (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h',i,j,kk,l,m,n,o,p,q,r) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = h -> f h'
k h
h f h'
-> (h' -> (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r))
-> f (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h',i,j,kk,l,m,n,o,p,q,r,s) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r, s)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = h -> f h'
k h
h f h'
-> (h'
-> (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r, s))
-> f (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _8 #-}
class Field9 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_9 :: Lens s t a b
default _9 :: (Generic s, Generic t, GIxed N8 (Rep s) (Rep t) a b)
=> Lens s t a b
_9 = Proxy N8 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N8
proxyN8
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f,g,h,i') i i' where
_9 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h, i') i i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = i -> f i'
k i
i f i'
-> (i' -> (a, b, c, d, e, f, g, h, i'))
-> f (a, b, c, d, e, f, g, h, i')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i')
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j) (a,b,c,d,e,f,g,h,i',j) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h, i', j) i i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = i -> f i'
k i
i f i'
-> (i' -> (a, b, c, d, e, f, g, h, i', j))
-> f (a, b, c, d, e, f, g, h, i', j)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d,e,f,g,h,i',j,kk) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d, e, f, g, h, i', j, kk)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = i -> f i'
k i
i f i'
-> (i' -> (a, b, c, d, e, f, g, h, i', j, kk))
-> f (a, b, c, d, e, f, g, h, i', j, kk)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e,f,g,h,i',j,kk,l) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e, f, g, h, i', j, kk, l)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = i -> f i'
k i
i f i'
-> (i' -> (a, b, c, d, e, f, g, h, i', j, kk, l))
-> f (a, b, c, d, e, f, g, h, i', j, kk, l)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f,g,h,i',j,kk,l,m) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f, g, h, i', j, kk, l, m)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = i -> f i'
k i
i f i'
-> (i' -> (a, b, c, d, e, f, g, h, i', j, kk, l, m))
-> f (a, b, c, d, e, f, g, h, i', j, kk, l, m)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l,m
m)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g,h,i',j,kk,l,m,n) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g, h, i', j, kk, l, m, n)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = i -> f i'
k i
i f i'
-> (i' -> (a, b, c, d, e, f, g, h, i', j, kk, l, m, n))
-> f (a, b, c, d, e, f, g, h, i', j, kk, l, m, n)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h,i',j,kk,l,m,n,o) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = i -> f i'
k i
i f i'
-> (i' -> (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o))
-> f (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i',j,kk,l,m,n,o,p) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = i -> f i'
k i
i f i'
-> (i' -> (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p))
-> f (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i',j,kk,l,m,n,o,p,q) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = i -> f i'
k i
i f i'
-> (i' -> (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q))
-> f (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i',j,kk,l,m,n,o,p,q,r) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = i -> f i'
k i
i f i'
-> (i' -> (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r))
-> f (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i',j,kk,l,m,n,o,p,q,r,s) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r, s)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = i -> f i'
k i
i f i'
-> (i'
-> (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r, s))
-> f (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _9 #-}
class Field10 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_10 :: Lens s t a b
default _10 :: (Generic s, Generic t, GIxed N9 (Rep s) (Rep t) a b)
=> Lens s t a b
_10 = Proxy N9 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N9
proxyN9
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j) (a,b,c,d,e,f,g,h,i,j') j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h, i, j') j j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = j -> f j'
k j
j f j'
-> (j' -> (a, b, c, d, e, f, g, h, i, j'))
-> f (a, b, c, d, e, f, g, h, i, j')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j')
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d,e,f,g,h,i,j',kk) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d, e, f, g, h, i, j', kk)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = j -> f j'
k j
j f j'
-> (j' -> (a, b, c, d, e, f, g, h, i, j', kk))
-> f (a, b, c, d, e, f, g, h, i, j', kk)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e,f,g,h,i,j',kk,l) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e, f, g, h, i, j', kk, l)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = j -> f j'
k j
j f j'
-> (j' -> (a, b, c, d, e, f, g, h, i, j', kk, l))
-> f (a, b, c, d, e, f, g, h, i, j', kk, l)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f,g,h,i,j',kk,l,m) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f, g, h, i, j', kk, l, m)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = j -> f j'
k j
j f j'
-> (j' -> (a, b, c, d, e, f, g, h, i, j', kk, l, m))
-> f (a, b, c, d, e, f, g, h, i, j', kk, l, m)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l,m
m)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g,h,i,j',kk,l,m,n) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g, h, i, j', kk, l, m, n)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = j -> f j'
k j
j f j'
-> (j' -> (a, b, c, d, e, f, g, h, i, j', kk, l, m, n))
-> f (a, b, c, d, e, f, g, h, i, j', kk, l, m, n)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l,m
m,n
n)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h,i,j',kk,l,m,n,o) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = j -> f j'
k j
j f j'
-> (j' -> (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o))
-> f (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i,j',kk,l,m,n,o,p) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = j -> f j'
k j
j f j'
-> (j' -> (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p))
-> f (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j',kk,l,m,n,o,p,q) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = j -> f j'
k j
j f j'
-> (j' -> (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q))
-> f (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j',kk,l,m,n,o,p,q,r) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = j -> f j'
k j
j f j'
-> (j' -> (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r))
-> f (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j',kk,l,m,n,o,p,q,r,s) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r, s)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = j -> f j'
k j
j f j'
-> (j'
-> (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r, s))
-> f (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _10 #-}
class Field11 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_11 :: Lens s t a b
default _11 :: (Generic s, Generic t, GIxed N10 (Rep s) (Rep t) a b)
=> Lens s t a b
_11 = Proxy N10 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N10
proxyN10
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d,e,f,g,h,i,j,kk') kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d, e, f, g, h, i, j, kk')
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = kk -> f kk'
k kk
kk f kk'
-> (kk' -> (a, b, c, d, e, f, g, h, i, j, kk'))
-> f (a, b, c, d, e, f, g, h, i, j, kk')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk')
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e,f,g,h,i,j,kk',l) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e, f, g, h, i, j, kk', l)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = kk -> f kk'
k kk
kk f kk'
-> (kk' -> (a, b, c, d, e, f, g, h, i, j, kk', l))
-> f (a, b, c, d, e, f, g, h, i, j, kk', l)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l)
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f,g,h,i,j,kk',l,m) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f, g, h, i, j, kk', l, m)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = kk -> f kk'
k kk
kk f kk'
-> (kk' -> (a, b, c, d, e, f, g, h, i, j, kk', l, m))
-> f (a, b, c, d, e, f, g, h, i, j, kk', l, m)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l,m
m)
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g,h,i,j,kk',l,m,n) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g, h, i, j, kk', l, m, n)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = kk -> f kk'
k kk
kk f kk'
-> (kk' -> (a, b, c, d, e, f, g, h, i, j, kk', l, m, n))
-> f (a, b, c, d, e, f, g, h, i, j, kk', l, m, n)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l,m
m,n
n)
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h,i,j,kk',l,m,n,o) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = kk -> f kk'
k kk
kk f kk'
-> (kk' -> (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o))
-> f (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l,m
m,n
n,o
o)
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i,j,kk',l,m,n,o,p) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = kk -> f kk'
k kk
kk f kk'
-> (kk' -> (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p))
-> f (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l,m
m,n
n,o
o,p
p)
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j,kk',l,m,n,o,p,q) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = kk -> f kk'
k kk
kk f kk'
-> (kk' -> (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q))
-> f (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk',l,m,n,o,p,q,r) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = kk -> f kk'
k kk
kk f kk'
-> (kk'
-> (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r))
-> f (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk',l,m,n,o,p,q,r,s) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r, s)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = kk -> f kk'
k kk
kk f kk'
-> (kk'
-> (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r, s))
-> f (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _11 #-}
class Field12 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_12 :: Lens s t a b
default _12 :: (Generic s, Generic t, GIxed N11 (Rep s) (Rep t) a b)
=> Lens s t a b
_12 = Proxy N11 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N11
proxyN11
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e,f,g,h,i,j,kk,l') l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e, f, g, h, i, j, kk, l')
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = l -> f l'
k l
l f l'
-> (l' -> (a, b, c, d, e, f, g, h, i, j, kk, l'))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l')
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f,g,h,i,j,kk,l',m) l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f, g, h, i, j, kk, l', m)
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = l -> f l'
k l
l f l'
-> (l' -> (a, b, c, d, e, f, g, h, i, j, kk, l', m))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l', m)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l',m
m)
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g,h,i,j,kk,l',m,n) l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g, h, i, j, kk, l', m, n)
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = l -> f l'
k l
l f l'
-> (l' -> (a, b, c, d, e, f, g, h, i, j, kk, l', m, n))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l', m, n)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l',m
m,n
n)
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h,i,j,kk,l',m,n,o) l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o)
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = l -> f l'
k l
l f l'
-> (l' -> (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l',m
m,n
n,o
o)
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i,j,kk,l',m,n,o,p) l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p)
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = l -> f l'
k l
l f l'
-> (l' -> (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l',m
m,n
n,o
o,p
p)
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j,kk,l',m,n,o,p,q) l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q)
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = l -> f l'
k l
l f l'
-> (l' -> (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l',m
m,n
n,o
o,p
p,q
q)
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk,l',m,n,o,p,q,r) l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r)
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = l -> f l'
k l
l f l'
-> (l' -> (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l',m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l',m,n,o,p,q,r,s) l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r, s)
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = l -> f l'
k l
l f l'
-> (l'
-> (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r, s))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l',m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _12 #-}
class Field13 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_13 :: Lens s t a b
default _13 :: (Generic s, Generic t, GIxed N12 (Rep s) (Rep t) a b)
=> Lens s t a b
_13 = Proxy N12 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N12
proxyN12
{-# INLINE _13 #-}
instance Field13 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f,g,h,i,j,kk,l,m') m m' where
_13 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f, g, h, i, j, kk, l, m')
m
m'
_13 m -> f m'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = m -> f m'
k m
m f m'
-> (m' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m'))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \m'
m' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m'
m')
{-# INLINE _13 #-}
instance Field13 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g,h,i,j,kk,l,m',n) m m' where
_13 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g, h, i, j, kk, l, m', n)
m
m'
_13 m -> f m'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = m -> f m'
k m
m f m'
-> (m' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m', n))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m', n)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \m'
m' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m'
m',n
n)
{-# INLINE _13 #-}
instance Field13 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h,i,j,kk,l,m',n,o) m m' where
_13 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o)
m
m'
_13 m -> f m'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = m -> f m'
k m
m f m'
-> (m' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \m'
m' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m'
m',n
n,o
o)
{-# INLINE _13 #-}
instance Field13 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i,j,kk,l,m',n,o,p) m m' where
_13 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p)
m
m'
_13 m -> f m'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = m -> f m'
k m
m f m'
-> (m' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \m'
m' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m'
m',n
n,o
o,p
p)
{-# INLINE _13 #-}
instance Field13 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j,kk,l,m',n,o,p,q) m m' where
_13 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q)
m
m'
_13 m -> f m'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = m -> f m'
k m
m f m'
-> (m' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \m'
m' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m'
m',n
n,o
o,p
p,q
q)
{-# INLINE _13 #-}
instance Field13 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk,l,m',n,o,p,q,r) m m' where
_13 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r)
m
m'
_13 m -> f m'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = m -> f m'
k m
m f m'
-> (m' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \m'
m' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m'
m',n
n,o
o,p
p,q
q,r
r)
{-# INLINE _13 #-}
instance Field13 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l,m',n,o,p,q,r,s) m m' where
_13 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r, s)
m
m'
_13 m -> f m'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = m -> f m'
k m
m f m'
-> (m'
-> (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r, s))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \m'
m' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m'
m',n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _13 #-}
class Field14 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_14 :: Lens s t a b
default _14 :: (Generic s, Generic t, GIxed N13 (Rep s) (Rep t) a b)
=> Lens s t a b
_14 = Proxy N13 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N13
proxyN13
{-# INLINE _14 #-}
instance Field14 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n') n n' where
_14 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n')
n
n'
_14 n -> f n'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = n -> f n'
k n
n f n'
-> (n' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n'))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \n'
n' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n'
n')
{-# INLINE _14 #-}
instance Field14 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n',o) n n' where
_14 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o)
n
n'
_14 n -> f n'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = n -> f n'
k n
n f n'
-> (n' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \n'
n' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n'
n',o
o)
{-# INLINE _14 #-}
instance Field14 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n',o,p) n n' where
_14 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p)
n
n'
_14 n -> f n'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = n -> f n'
k n
n f n'
-> (n' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \n'
n' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n'
n',o
o,p
p)
{-# INLINE _14 #-}
instance Field14 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n',o,p,q) n n' where
_14 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q)
n
n'
_14 n -> f n'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = n -> f n'
k n
n f n'
-> (n' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \n'
n' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n'
n',o
o,p
p,q
q)
{-# INLINE _14 #-}
instance Field14 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n',o,p,q,r) n n' where
_14 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r)
n
n'
_14 n -> f n'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = n -> f n'
k n
n f n'
-> (n' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \n'
n' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n'
n',o
o,p
p,q
q,r
r)
{-# INLINE _14 #-}
instance Field14 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n',o,p,q,r,s) n n' where
_14 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r, s)
n
n'
_14 n -> f n'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = n -> f n'
k n
n f n'
-> (n'
-> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r, s))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \n'
n' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n'
n',o
o,p
p,q
q,r
r,s
s)
{-# INLINE _14 #-}
class Field15 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_15 :: Lens s t a b
default _15 :: (Generic s, Generic t, GIxed N14 (Rep s) (Rep t) a b)
=> Lens s t a b
_15 = Proxy N14 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N14
proxyN14
{-# INLINE _15 #-}
instance Field15 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o') o o' where
_15 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o')
o
o'
_15 o -> f o'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = o -> f o'
k o
o f o'
-> (o' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o'))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \o'
o' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o'
o')
{-# INLINE _15 #-}
instance Field15 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o',p) o o' where
_15 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p)
o
o'
_15 o -> f o'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = o -> f o'
k o
o f o'
-> (o' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \o'
o' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o'
o',p
p)
{-# INLINE _15 #-}
instance Field15 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o',p,q) o o' where
_15 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q)
o
o'
_15 o -> f o'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = o -> f o'
k o
o f o'
-> (o' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \o'
o' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o'
o',p
p,q
q)
{-# INLINE _15 #-}
instance Field15 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o',p,q,r) o o' where
_15 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r)
o
o'
_15 o -> f o'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = o -> f o'
k o
o f o'
-> (o' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \o'
o' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o'
o',p
p,q
q,r
r)
{-# INLINE _15 #-}
instance Field15 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o',p,q,r,s) o o' where
_15 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r, s)
o
o'
_15 o -> f o'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = o -> f o'
k o
o f o'
-> (o'
-> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r, s))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \o'
o' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o'
o',p
p,q
q,r
r,s
s)
{-# INLINE _15 #-}
class Field16 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_16 :: Lens s t a b
default _16 :: (Generic s, Generic t, GIxed N15 (Rep s) (Rep t) a b)
=> Lens s t a b
_16 = Proxy N15 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N15
proxyN15
{-# INLINE _16 #-}
instance Field16 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p') p p' where
_16 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p')
p
p'
_16 p -> f p'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = p -> f p'
k p
p f p'
-> (p' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p'))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \p'
p' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p'
p')
{-# INLINE _16 #-}
instance Field16 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p',q) p p' where
_16 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q)
p
p'
_16 p -> f p'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = p -> f p'
k p
p f p'
-> (p' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \p'
p' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p'
p',q
q)
{-# INLINE _16 #-}
instance Field16 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p',q,r) p p' where
_16 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r)
p
p'
_16 p -> f p'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = p -> f p'
k p
p f p'
-> (p' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \p'
p' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p'
p',q
q,r
r)
{-# INLINE _16 #-}
instance Field16 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p',q,r,s) p p' where
_16 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r, s)
p
p'
_16 p -> f p'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = p -> f p'
k p
p f p'
-> (p'
-> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r, s))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \p'
p' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p'
p',q
q,r
r,s
s)
{-# INLINE _16 #-}
class Field17 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_17 :: Lens s t a b
default _17 :: (Generic s, Generic t, GIxed N16 (Rep s) (Rep t) a b)
=> Lens s t a b
_17 = Proxy N16 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N16
proxyN16
{-# INLINE _17 #-}
instance Field17 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q') q q' where
_17 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q')
q
q'
_17 q -> f q'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = q -> f q'
k q
q f q'
-> (q' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q'))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \q'
q' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q'
q')
{-# INLINE _17 #-}
instance Field17 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q',r) q q' where
_17 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r)
q
q'
_17 q -> f q'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = q -> f q'
k q
q f q'
-> (q' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \q'
q' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q'
q',r
r)
{-# INLINE _17 #-}
instance Field17 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q',r,s) q q' where
_17 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r, s)
q
q'
_17 q -> f q'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = q -> f q'
k q
q f q'
-> (q'
-> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r, s))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r, s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \q'
q' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q'
q',r
r,s
s)
{-# INLINE _17 #-}
class Field18 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_18 :: Lens s t a b
default _18 :: (Generic s, Generic t, GIxed N17 (Rep s) (Rep t) a b)
=> Lens s t a b
_18 = Proxy N17 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N17
proxyN17
{-# INLINE _18 #-}
instance Field18 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r') r r' where
_18 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r')
r
r'
_18 r -> f r'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = r -> f r'
k r
r f r'
-> (r' -> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r'))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \r'
r' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r'
r')
{-# INLINE _18 #-}
instance Field18 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r',s) r r' where
_18 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r', s)
r
r'
_18 r -> f r'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = r -> f r'
k r
r f r'
-> (r'
-> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r', s))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r', s)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \r'
r' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r'
r',s
s)
{-# INLINE _18 #-}
class Field19 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_19 :: Lens s t a b
default _19 :: (Generic s, Generic t, GIxed N18 (Rep s) (Rep t) a b)
=> Lens s t a b
_19 = Proxy N18 -> Lens s t a b
forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N18
proxyN18
{-# INLINE _19 #-}
instance Field19 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s') s s' where
_19 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s')
s
s'
_19 s -> f s'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = s -> f s'
k s
s f s'
-> (s'
-> (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s'))
-> f (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s')
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \s'
s' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s'
s')
{-# INLINE _19 #-}
_1' :: Field1 s t a b => Lens s t a b
_1' :: forall s t a b. Field1 s t a b => Lens s t a b
_1' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field1 s t a b => Lens s t a b
Lens s t a b
_1 a -> f b
f s
x
{-# INLINE _1' #-}
_2' :: Field2 s t a b => Lens s t a b
_2' :: forall s t a b. Field2 s t a b => Lens s t a b
_2' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field2 s t a b => Lens s t a b
Lens s t a b
_2 a -> f b
f s
x
{-# INLINE _2' #-}
_3' :: Field3 s t a b => Lens s t a b
_3' :: forall s t a b. Field3 s t a b => Lens s t a b
_3' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field3 s t a b => Lens s t a b
Lens s t a b
_3 a -> f b
f s
x
{-# INLINE _3' #-}
_4' :: Field4 s t a b => Lens s t a b
_4' :: forall s t a b. Field4 s t a b => Lens s t a b
_4' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field4 s t a b => Lens s t a b
Lens s t a b
_4 a -> f b
f s
x
{-# INLINE _4' #-}
_5' :: Field5 s t a b => Lens s t a b
_5' :: forall s t a b. Field5 s t a b => Lens s t a b
_5' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field5 s t a b => Lens s t a b
Lens s t a b
_5 a -> f b
f s
x
{-# INLINE _5' #-}
_6' :: Field6 s t a b => Lens s t a b
_6' :: forall s t a b. Field6 s t a b => Lens s t a b
_6' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field6 s t a b => Lens s t a b
Lens s t a b
_6 a -> f b
f s
x
{-# INLINE _6' #-}
_7' :: Field7 s t a b => Lens s t a b
_7' :: forall s t a b. Field7 s t a b => Lens s t a b
_7' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field7 s t a b => Lens s t a b
Lens s t a b
_7 a -> f b
f s
x
{-# INLINE _7' #-}
_8' :: Field8 s t a b => Lens s t a b
_8' :: forall s t a b. Field8 s t a b => Lens s t a b
_8' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field8 s t a b => Lens s t a b
Lens s t a b
_8 a -> f b
f s
x
{-# INLINE _8' #-}
_9' :: Field9 s t a b => Lens s t a b
_9' :: forall s t a b. Field9 s t a b => Lens s t a b
_9' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field9 s t a b => Lens s t a b
Lens s t a b
_9 a -> f b
f s
x
{-# INLINE _9' #-}
_10' :: Field10 s t a b => Lens s t a b
_10' :: forall s t a b. Field10 s t a b => Lens s t a b
_10' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field10 s t a b => Lens s t a b
Lens s t a b
_10 a -> f b
f s
x
{-# INLINE _10' #-}
_11' :: Field11 s t a b => Lens s t a b
_11' :: forall s t a b. Field11 s t a b => Lens s t a b
_11' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field11 s t a b => Lens s t a b
Lens s t a b
_11 a -> f b
f s
x
{-# INLINE _11' #-}
_12' :: Field12 s t a b => Lens s t a b
_12' :: forall s t a b. Field12 s t a b => Lens s t a b
_12' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field12 s t a b => Lens s t a b
Lens s t a b
_12 a -> f b
f s
x
{-# INLINE _12' #-}
_13' :: Field13 s t a b => Lens s t a b
_13' :: forall s t a b. Field13 s t a b => Lens s t a b
_13' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field13 s t a b => Lens s t a b
Lens s t a b
_13 a -> f b
f s
x
{-# INLINE _13' #-}
_14' :: Field14 s t a b => Lens s t a b
_14' :: forall s t a b. Field14 s t a b => Lens s t a b
_14' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field14 s t a b => Lens s t a b
Lens s t a b
_14 a -> f b
f s
x
{-# INLINE _14' #-}
_15' :: Field15 s t a b => Lens s t a b
_15' :: forall s t a b. Field15 s t a b => Lens s t a b
_15' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field15 s t a b => Lens s t a b
Lens s t a b
_15 a -> f b
f s
x
{-# INLINE _15' #-}
_16' :: Field16 s t a b => Lens s t a b
_16' :: forall s t a b. Field16 s t a b => Lens s t a b
_16' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field16 s t a b => Lens s t a b
Lens s t a b
_16 a -> f b
f s
x
{-# INLINE _16' #-}
_17' :: Field17 s t a b => Lens s t a b
_17' :: forall s t a b. Field17 s t a b => Lens s t a b
_17' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field17 s t a b => Lens s t a b
Lens s t a b
_17 a -> f b
f s
x
{-# INLINE _17' #-}
_18' :: Field18 s t a b => Lens s t a b
_18' :: forall s t a b. Field18 s t a b => Lens s t a b
_18' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field18 s t a b => Lens s t a b
Lens s t a b
_18 a -> f b
f s
x
{-# INLINE _18' #-}
_19' :: Field19 s t a b => Lens s t a b
_19' :: forall s t a b. Field19 s t a b => Lens s t a b
_19' = \a -> f b
f !s
x -> (a -> f b) -> s -> f t
forall s t a b. Field19 s t a b => Lens s t a b
Lens s t a b
_19 a -> f b
f s
x
{-# INLINE _19' #-}
ix :: (Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) => f n -> Lens s t a b
ix :: forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix f n
n a -> f b
f = (Rep t Any -> t) -> f (Rep t Any) -> f t
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Rep t Any -> t
forall a x. Generic a => Rep a x -> a
forall x. Rep t x -> t
to (f (Rep t Any) -> f t) -> (s -> f (Rep t Any)) -> s -> f t
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f n -> Lens (Rep s Any) (Rep t Any) a b
forall {k} {k} (n :: k) (s :: k -> *) (t :: k -> *) a b
(f :: k -> *) (x :: k).
GIxed n s t a b =>
f n -> Lens (s x) (t x) a b
forall (f :: k -> *) x. f n -> Lens (Rep s x) (Rep t x) a b
gix f n
n a -> f b
f (Rep s Any -> f (Rep t Any))
-> (s -> Rep s Any) -> s -> f (Rep t Any)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> Rep s Any
forall x. s -> Rep s x
forall a x. Generic a => a -> Rep a x
from
{-# INLINE ix #-}
type family GSize (f :: Type -> Type)
type instance GSize U1 = Z
type instance GSize (K1 i c) = S Z
type instance GSize (M1 i c f) = GSize f
type instance GSize (a :*: b) = Add (GSize a) (GSize b)
class GIxed n s t a b | n s -> a, n t -> b, n s b -> t, n t a -> s where
gix :: f n -> Lens (s x) (t x) a b
instance GIxed N0 (K1 i a) (K1 i b) a b where
gix :: forall (f :: * -> *) (x :: k).
f N0 -> Lens (K1 i a x) (K1 i b x) a b
gix f N0
_ = (K1 i a x -> a)
-> (f b -> f (K1 i b x)) -> (a -> f b) -> K1 i a x -> f (K1 i b x)
forall a b c d. (a -> b) -> (c -> d) -> (b -> c) -> a -> d
forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap K1 i a x -> a
forall k i c (p :: k). K1 i c p -> c
unK1 ((b -> K1 i b x) -> f b -> f (K1 i b x)
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> K1 i b x
forall k i c (p :: k). c -> K1 i c p
K1)
{-# INLINE gix #-}
instance GIxed n s t a b => GIxed n (M1 i c s) (M1 i c t) a b where
gix :: forall (f :: k -> *) (x :: k).
f n -> Lens (M1 i c s x) (M1 i c t x) a b
gix f n
n = (M1 i c s x -> s x)
-> (f (t x) -> f (M1 i c t x))
-> (s x -> f (t x))
-> M1 i c s x
-> f (M1 i c t x)
forall a b c d. (a -> b) -> (c -> d) -> (b -> c) -> a -> d
forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap M1 i c s x -> s x
forall k i (c :: Meta) (f :: k -> *) (p :: k). M1 i c f p -> f p
unM1 ((t x -> M1 i c t x) -> f (t x) -> f (M1 i c t x)
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap t x -> M1 i c t x
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1) ((s x -> f (t x)) -> M1 i c s x -> f (M1 i c t x))
-> ((a -> f b) -> s x -> f (t x))
-> (a -> f b)
-> M1 i c s x
-> f (M1 i c t x)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f n -> Lens (s x) (t x) a b
forall {k} {k} (n :: k) (s :: k -> *) (t :: k -> *) a b
(f :: k -> *) (x :: k).
GIxed n s t a b =>
f n -> Lens (s x) (t x) a b
forall (f :: k -> *) (x :: k). f n -> Lens (s x) (t x) a b
gix f n
n
{-# INLINE gix #-}
instance (p ~ GT (GSize s) n,
p ~ GT (GSize t) n,
GIxed' p n s s' t t' a b)
=> GIxed n (s :*: s') (t :*: t') a b where
gix :: forall (f :: * -> *) x.
f n -> Lens ((:*:) s s' x) ((:*:) t t' x) a b
gix = Proxy p -> f n -> Lens ((:*:) s s' x) ((:*:) t t' x) a b
forall p n (s :: * -> *) (s' :: * -> *) (t :: * -> *)
(t' :: * -> *) a b (f :: * -> *) (g :: * -> *) x.
GIxed' p n s s' t t' a b =>
f p -> g n -> Lens ((:*:) s s' x) ((:*:) t t' x) a b
forall (f :: * -> *) (g :: * -> *) x.
f p -> g n -> Lens ((:*:) s s' x) ((:*:) t t' x) a b
gix' (Proxy p
forall {k} (t :: k). Proxy t
Proxy :: Proxy p)
{-# INLINE gix #-}
class (p ~ GT (GSize s) n,
p ~ GT (GSize t) n)
=> GIxed' p n s s' t t' a b | p n s s' -> a
, p n t t' -> b
, p n s s' b -> t t'
, p n t t' a -> s s' where
gix' :: f p -> g n -> Lens ((s :*: s') x) ((t :*: t') x) a b
instance (GT (GSize s) n ~ T,
GT (GSize t) n ~ T,
GIxed n s t a b)
=> GIxed' T n s s' t s' a b where
gix' :: forall (f :: * -> *) (g :: * -> *) x.
f T -> g n -> Lens ((:*:) s s' x) ((:*:) t s' x) a b
gix' f T
_ g n
n a -> f b
f (s x
s :*: s' x
s') = (t x -> s' x -> (:*:) t s' x
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: s' x
s') (t x -> (:*:) t s' x) -> f (t x) -> f ((:*:) t s' x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> g n -> Lens (s x) (t x) a b
forall {k} {k} (n :: k) (s :: k -> *) (t :: k -> *) a b
(f :: k -> *) (x :: k).
GIxed n s t a b =>
f n -> Lens (s x) (t x) a b
forall (f :: * -> *) x. f n -> Lens (s x) (t x) a b
gix g n
n a -> f b
f s x
s
{-# INLINE gix' #-}
instance (GT (GSize s) n ~ F,
n' ~ Subtract (GSize s) n,
GIxed n' s' t' a b)
=> GIxed' F n s s' s t' a b where
gix' :: forall (f :: * -> *) (g :: * -> *) x.
f F -> g n -> Lens ((:*:) s s' x) ((:*:) s t' x) a b
gix' f F
_ g n
_ a -> f b
f (s x
s :*: s' x
s') = (s x
s s x -> t' x -> (:*:) s t' x
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*:) (t' x -> (:*:) s t' x) -> f (t' x) -> f ((:*:) s t' x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Proxy n' -> Lens (s' x) (t' x) a b
forall {k} {k} (n :: k) (s :: k -> *) (t :: k -> *) a b
(f :: k -> *) (x :: k).
GIxed n s t a b =>
f n -> Lens (s x) (t x) a b
forall (f :: * -> *) x. f n' -> Lens (s' x) (t' x) a b
gix (Proxy n'
forall {k} (t :: k). Proxy t
Proxy :: Proxy n') a -> f b
f s' x
s'
{-# INLINE gix' #-}
data Z
data S a
data T
data F
type family Add x y
type instance Add Z y = y
type instance Add (S x) y = S (Add x y)
type family Subtract x y
type instance Subtract Z x = x
type instance Subtract (S x) (S y) = Subtract x y
type family GT x y
type instance GT Z x = F
type instance GT (S x) Z = T
type instance GT (S x) (S y) = GT x y
type N0 = Z
type N1 = S N0
type N2 = S N1
type N3 = S N2
type N4 = S N3
type N5 = S N4
type N6 = S N5
type N7 = S N6
type N8 = S N7
type N9 = S N8
type N10 = S N9
type N11 = S N10
type N12 = S N11
type N13 = S N12
type N14 = S N13
type N15 = S N14
type N16 = S N15
type N17 = S N16
type N18 = S N17
proxyN0 :: Proxy N0
proxyN0 :: Proxy N0
proxyN0 = Proxy N0
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN0 #-}
proxyN1 :: Proxy N1
proxyN1 :: Proxy N1
proxyN1 = Proxy N1
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN1 #-}
proxyN2 :: Proxy N2
proxyN2 :: Proxy N2
proxyN2 = Proxy N2
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN2 #-}
proxyN3 :: Proxy N3
proxyN3 :: Proxy N3
proxyN3 = Proxy N3
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN3 #-}
proxyN4 :: Proxy N4
proxyN4 :: Proxy N4
proxyN4 = Proxy N4
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN4 #-}
proxyN5 :: Proxy N5
proxyN5 :: Proxy N5
proxyN5 = Proxy N5
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN5 #-}
proxyN6 :: Proxy N6
proxyN6 :: Proxy N6
proxyN6 = Proxy N6
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN6 #-}
proxyN7 :: Proxy N7
proxyN7 :: Proxy N7
proxyN7 = Proxy N7
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN7 #-}
proxyN8 :: Proxy N8
proxyN8 :: Proxy N8
proxyN8 = Proxy N8
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN8 #-}
proxyN9 :: Proxy N9
proxyN9 :: Proxy N9
proxyN9 = Proxy N9
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN9 #-}
proxyN10 :: Proxy N10
proxyN10 :: Proxy N10
proxyN10 = Proxy N10
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN10 #-}
proxyN11 :: Proxy N11
proxyN11 :: Proxy N11
proxyN11 = Proxy N11
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN11 #-}
proxyN12 :: Proxy N12
proxyN12 :: Proxy N12
proxyN12 = Proxy N12
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN12 #-}
proxyN13 :: Proxy N13
proxyN13 :: Proxy N13
proxyN13 = Proxy N13
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN13 #-}
proxyN14 :: Proxy N14
proxyN14 :: Proxy N14
proxyN14 = Proxy N14
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN14 #-}
proxyN15 :: Proxy N15
proxyN15 :: Proxy N15
proxyN15 = Proxy N15
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN15 #-}
proxyN16 :: Proxy N16
proxyN16 :: Proxy N16
proxyN16 = Proxy N16
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN16 #-}
proxyN17 :: Proxy N17
proxyN17 :: Proxy N17
proxyN17 = Proxy N17
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN17 #-}
proxyN18 :: Proxy N18
proxyN18 :: Proxy N18
proxyN18 = Proxy N18
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN18 #-}