{-# LANGUAGE CPP #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE Trustworthy #-} #if __GLASGOW_HASKELL__ >= 806 {-# LANGUAGE PolyKinds #-} #else {-# LANGUAGE TypeInType #-} #endif ------------------------------------------------------------------------------- -- | -- Module : Control.Lens.Type -- Copyright : (C) 2012-16 Edward Kmett -- License : BSD-style (see the file LICENSE) -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : Rank2Types -- -- This module exports the majority of the types that need to appear in user -- signatures or in documentation when talking about lenses. The remaining types -- for consuming lenses are distributed across various modules in the hierarchy. ------------------------------------------------------------------------------- module Control.Lens.Type ( -- * Other Equality, Equality', As , Iso, Iso' , Prism , Prism' , Review , AReview -- * Lenses, Folds and Traversals , Lens, Lens' , Traversal, Traversal' , Traversal1, Traversal1' , Setter, Setter' , Getter, Fold , Fold1 -- * Indexed , IndexedLens, IndexedLens' , IndexedTraversal, IndexedTraversal' , IndexedTraversal1, IndexedTraversal1' , IndexedSetter, IndexedSetter' , IndexedGetter, IndexedFold , IndexedFold1 -- * Index-Preserving , IndexPreservingLens, IndexPreservingLens' , IndexPreservingTraversal, IndexPreservingTraversal' , IndexPreservingTraversal1, IndexPreservingTraversal1' , IndexPreservingSetter, IndexPreservingSetter' , IndexPreservingGetter, IndexPreservingFold , IndexPreservingFold1 -- * Common , Simple , LensLike, LensLike' , Over, Over' , IndexedLensLike, IndexedLensLike' , Optical, Optical' , Optic, Optic' ) where import Prelude () import Control.Lens.Internal.Prelude import Control.Lens.Internal.Setter import Control.Lens.Internal.Indexed import Data.Bifunctor import Data.Functor.Apply import Data.Kind -- $setup -- >>> :set -XNoOverloadedStrings -- >>> import Control.Lens -- >>> import Debug.SimpleReflect.Expr -- >>> import Debug.SimpleReflect.Vars as Vars hiding (f,g,h) -- >>> let f :: Expr -> Expr; f = Debug.SimpleReflect.Vars.f -- >>> let g :: Expr -> Expr; g = Debug.SimpleReflect.Vars.g -- >>> let h :: Expr -> Expr -> Expr; h = Debug.SimpleReflect.Vars.h -- >>> let getter :: Expr -> Expr; getter = fun "getter" -- >>> let setter :: Expr -> Expr -> Expr; setter = fun "setter" -- >>> import Numeric.Natural -- >>> let nat :: Prism' Integer Natural; nat = prism toInteger $ \i -> if i < 0 then Left i else Right (fromInteger i) ------------------------------------------------------------------------------- -- Lenses ------------------------------------------------------------------------------- -- | A 'Lens' is actually a lens family as described in -- <http://comonad.com/reader/2012/mirrored-lenses/>. -- -- With great power comes great responsibility and a 'Lens' is subject to the -- three common sense 'Lens' laws: -- -- 1) You get back what you put in: -- -- @ -- 'Control.Lens.Getter.view' l ('Control.Lens.Setter.set' l v s) ≡ v -- @ -- -- 2) Putting back what you got doesn't change anything: -- -- @ -- 'Control.Lens.Setter.set' l ('Control.Lens.Getter.view' l s) s ≡ s -- @ -- -- 3) Setting twice is the same as setting once: -- -- @ -- 'Control.Lens.Setter.set' l v' ('Control.Lens.Setter.set' l v s) ≡ 'Control.Lens.Setter.set' l v' s -- @ -- -- These laws are strong enough that the 4 type parameters of a 'Lens' cannot -- vary fully independently. For more on how they interact, read the \"Why is -- it a Lens Family?\" section of -- <http://comonad.com/reader/2012/mirrored-lenses/>. -- -- There are some emergent properties of these laws: -- -- 1) @'Control.Lens.Setter.set' l s@ must be injective for every @s@ This is a consequence of law #1 -- -- 2) @'Control.Lens.Setter.set' l@ must be surjective, because of law #2, which indicates that it is possible to obtain any 'v' from some 's' such that @'Control.Lens.Setter.set' s v = s@ -- -- 3) Given just the first two laws you can prove a weaker form of law #3 where the values @v@ that you are setting match: -- -- @ -- 'Control.Lens.Setter.set' l v ('Control.Lens.Setter.set' l v s) ≡ 'Control.Lens.Setter.set' l v s -- @ -- -- Every 'Lens' can be used directly as a 'Control.Lens.Setter.Setter' or 'Traversal'. -- -- You can also use a 'Lens' for 'Control.Lens.Getter.Getting' as if it were a -- 'Fold' or 'Getter'. -- -- Since every 'Lens' is a valid 'Traversal', the -- 'Traversal' laws are required of any 'Lens' you create: -- -- @ -- l 'pure' ≡ 'pure' -- 'fmap' (l f) '.' l g ≡ 'Data.Functor.Compose.getCompose' '.' l ('Data.Functor.Compose.Compose' '.' 'fmap' f '.' g) -- @ -- -- @ -- type 'Lens' s t a b = forall f. 'Functor' f => 'LensLike' f s t a b -- @ type Lens s t a b = forall f. Functor f => (a -> f b) -> s -> f t -- | @ -- type 'Lens'' = 'Simple' 'Lens' -- @ type Lens' s a = Lens s s a a -- | Every 'IndexedLens' is a valid 'Lens' and a valid 'Control.Lens.Traversal.IndexedTraversal'. type IndexedLens i s t a b = forall f p. (Indexable i p, Functor f) => p a (f b) -> s -> f t -- | @ -- type 'IndexedLens'' i = 'Simple' ('IndexedLens' i) -- @ type IndexedLens' i s a = IndexedLens i s s a a -- | An 'IndexPreservingLens' leaves any index it is composed with alone. type IndexPreservingLens s t a b = forall p f. (Conjoined p, Functor f) => p a (f b) -> p s (f t) -- | @ -- type 'IndexPreservingLens'' = 'Simple' 'IndexPreservingLens' -- @ type IndexPreservingLens' s a = IndexPreservingLens s s a a ------------------------------------------------------------------------------ -- Traversals ------------------------------------------------------------------------------ -- | A 'Traversal' can be used directly as a 'Control.Lens.Setter.Setter' or a 'Fold' (but not as a 'Lens') and provides -- the ability to both read and update multiple fields, subject to some relatively weak 'Traversal' laws. -- -- These have also been known as multilenses, but they have the signature and spirit of -- -- @ -- 'Data.Traversable.traverse' :: 'Data.Traversable.Traversable' f => 'Traversal' (f a) (f b) a b -- @ -- -- and the more evocative name suggests their application. -- -- Most of the time the 'Traversal' you will want to use is just 'Data.Traversable.traverse', but you can also pass any -- 'Lens' or 'Iso' as a 'Traversal', and composition of a 'Traversal' (or 'Lens' or 'Iso') with a 'Traversal' (or 'Lens' or 'Iso') -- using ('.') forms a valid 'Traversal'. -- -- The laws for a 'Traversal' @t@ follow from the laws for 'Data.Traversable.Traversable' as stated in \"The Essence of the Iterator Pattern\". -- -- @ -- t 'pure' ≡ 'pure' -- 'fmap' (t f) '.' t g ≡ 'Data.Functor.Compose.getCompose' '.' t ('Data.Functor.Compose.Compose' '.' 'fmap' f '.' g) -- @ -- -- One consequence of this requirement is that a 'Traversal' needs to leave the same number of elements as a -- candidate for subsequent 'Traversal' that it started with. Another testament to the strength of these laws -- is that the caveat expressed in section 5.5 of the \"Essence of the Iterator Pattern\" about exotic -- 'Data.Traversable.Traversable' instances that 'Data.Traversable.traverse' the same entry multiple times was actually already ruled out by the -- second law in that same paper! type Traversal s t a b = forall f. Applicative f => (a -> f b) -> s -> f t -- | @ -- type 'Traversal'' = 'Simple' 'Traversal' -- @ type Traversal' s a = Traversal s s a a -- | A 'Traversal' which targets at least one element. -- -- Note that since 'Apply' is not a superclass of 'Applicative', a 'Traversal1' -- cannot always be used in place of a 'Traversal'. In such circumstances -- 'Control.Lens.Traversal.cloneTraversal' will convert a 'Traversal1' into a 'Traversal'. type Traversal1 s t a b = forall f. Apply f => (a -> f b) -> s -> f t type Traversal1' s a = Traversal1 s s a a -- | Every 'IndexedTraversal' is a valid 'Control.Lens.Traversal.Traversal' or -- 'Control.Lens.Fold.IndexedFold'. -- -- The 'Indexed' constraint is used to allow an 'IndexedTraversal' to be used -- directly as a 'Control.Lens.Traversal.Traversal'. -- -- The 'Control.Lens.Traversal.Traversal' laws are still required to hold. -- -- In addition, the index @i@ should satisfy the requirement that it stays -- unchanged even when modifying the value @a@, otherwise traversals like -- 'indices' break the 'Traversal' laws. type IndexedTraversal i s t a b = forall p f. (Indexable i p, Applicative f) => p a (f b) -> s -> f t -- | @ -- type 'IndexedTraversal'' i = 'Simple' ('IndexedTraversal' i) -- @ type IndexedTraversal' i s a = IndexedTraversal i s s a a type IndexedTraversal1 i s t a b = forall p f. (Indexable i p, Apply f) => p a (f b) -> s -> f t type IndexedTraversal1' i s a = IndexedTraversal1 i s s a a -- | An 'IndexPreservingTraversal' leaves any index it is composed with alone. type IndexPreservingTraversal s t a b = forall p f. (Conjoined p, Applicative f) => p a (f b) -> p s (f t) -- | @ -- type 'IndexPreservingTraversal'' = 'Simple' 'IndexPreservingTraversal' -- @ type IndexPreservingTraversal' s a = IndexPreservingTraversal s s a a type IndexPreservingTraversal1 s t a b = forall p f. (Conjoined p, Apply f) => p a (f b) -> p s (f t) type IndexPreservingTraversal1' s a = IndexPreservingTraversal1 s s a a ------------------------------------------------------------------------------ -- Setters ------------------------------------------------------------------------------ -- | The only 'LensLike' law that can apply to a 'Setter' @l@ is that -- -- @ -- 'Control.Lens.Setter.set' l y ('Control.Lens.Setter.set' l x a) ≡ 'Control.Lens.Setter.set' l y a -- @ -- -- You can't 'Control.Lens.Getter.view' a 'Setter' in general, so the other two laws are irrelevant. -- -- However, two 'Functor' laws apply to a 'Setter': -- -- @ -- 'Control.Lens.Setter.over' l 'id' ≡ 'id' -- 'Control.Lens.Setter.over' l f '.' 'Control.Lens.Setter.over' l g ≡ 'Control.Lens.Setter.over' l (f '.' g) -- @ -- -- These can be stated more directly: -- -- @ -- l 'pure' ≡ 'pure' -- l f '.' 'untainted' '.' l g ≡ l (f '.' 'untainted' '.' g) -- @ -- -- You can compose a 'Setter' with a 'Lens' or a 'Traversal' using ('.') from the @Prelude@ -- and the result is always only a 'Setter' and nothing more. -- -- >>> over traverse f [a,b,c,d] -- [f a,f b,f c,f d] -- -- >>> over _1 f (a,b) -- (f a,b) -- -- >>> over (traverse._1) f [(a,b),(c,d)] -- [(f a,b),(f c,d)] -- -- >>> over both f (a,b) -- (f a,f b) -- -- >>> over (traverse.both) f [(a,b),(c,d)] -- [(f a,f b),(f c,f d)] type Setter s t a b = forall f. Settable f => (a -> f b) -> s -> f t -- | A 'Setter'' is just a 'Setter' that doesn't change the types. -- -- These are particularly common when talking about monomorphic containers. /e.g./ -- -- @ -- 'sets' Data.Text.map :: 'Setter'' 'Data.Text.Internal.Text' 'Char' -- @ -- -- @ -- type 'Setter'' = 'Simple' 'Setter' -- @ type Setter' s a = Setter s s a a -- | Every 'IndexedSetter' is a valid 'Setter'. -- -- The 'Setter' laws are still required to hold. type IndexedSetter i s t a b = forall f p. (Indexable i p, Settable f) => p a (f b) -> s -> f t -- | @ -- type 'IndexedSetter'' i = 'Simple' ('IndexedSetter' i) -- @ type IndexedSetter' i s a = IndexedSetter i s s a a -- | An 'IndexPreservingSetter' can be composed with a 'IndexedSetter', 'IndexedTraversal' or 'IndexedLens' -- and leaves the index intact, yielding an 'IndexedSetter'. type IndexPreservingSetter s t a b = forall p f. (Conjoined p, Settable f) => p a (f b) -> p s (f t) -- | @ -- type 'IndexedPreservingSetter'' i = 'Simple' 'IndexedPreservingSetter' -- @ type IndexPreservingSetter' s a = IndexPreservingSetter s s a a ----------------------------------------------------------------------------- -- Isomorphisms ----------------------------------------------------------------------------- -- | Isomorphism families can be composed with another 'Lens' using ('.') and 'id'. -- -- Since every 'Iso' is both a valid 'Lens' and a valid 'Prism', the laws for those types -- imply the following laws for an 'Iso' 'f': -- -- @ -- f '.' 'Control.Lens.Iso.from' f ≡ 'id' -- 'Control.Lens.Iso.from' f '.' f ≡ 'id' -- @ -- -- Note: Composition with an 'Iso' is index- and measure- preserving. type Iso s t a b = forall p f. (Profunctor p, Functor f) => p a (f b) -> p s (f t) -- | @ -- type 'Iso'' = 'Control.Lens.Type.Simple' 'Iso' -- @ type Iso' s a = Iso s s a a ------------------------------------------------------------------------------ -- Review Internals ------------------------------------------------------------------------------ -- | This is a limited form of a 'Prism' that can only be used for 're' operations. -- -- Like with a 'Getter', there are no laws to state for a 'Review'. -- -- You can generate a 'Review' by using 'unto'. You can also use any 'Prism' or 'Iso' -- directly as a 'Review'. type Review t b = forall p f. (Choice p, Bifunctor p, Settable f) => Optic' p f t b -- | If you see this in a signature for a function, the function is expecting a 'Review' -- (in practice, this usually means a 'Prism'). type AReview t b = Optic' Tagged Identity t b ------------------------------------------------------------------------------ -- Prism Internals ------------------------------------------------------------------------------ -- | A 'Prism' @l@ is a 'Traversal' that can also be turned -- around with 'Control.Lens.Review.re' to obtain a 'Getter' in the -- opposite direction. -- -- There are three laws that a 'Prism' should satisfy: -- -- First, if I 'Control.Lens.Review.re' or 'Control.Lens.Review.review' a value with a 'Prism' and then 'Control.Lens.Fold.preview' or use ('Control.Lens.Fold.^?'), I will get it back: -- -- @ -- 'Control.Lens.Fold.preview' l ('Control.Lens.Review.review' l b) ≡ 'Just' b -- @ -- -- Second, if you can extract a value @a@ using a 'Prism' @l@ from a value @s@, then the value @s@ is completely described by @l@ and @a@: -- -- @ -- 'Control.Lens.Fold.preview' l s ≡ 'Just' a ⟹ 'Control.Lens.Review.review' l a ≡ s -- @ -- -- Third, if you get non-match @t@, you can convert it result back to @s@: -- -- @ -- 'Control.Lens.Combinators.matching' l s ≡ 'Left' t ⟹ 'Control.Lens.Combinators.matching' l t ≡ 'Left' s -- @ -- -- The first two laws imply that the 'Traversal' laws hold for every 'Prism' and that we 'Data.Traversable.traverse' at most 1 element: -- -- @ -- 'Control.Lens.Fold.lengthOf' l x '<=' 1 -- @ -- -- It may help to think of this as an 'Iso' that can be partial in one direction. -- -- Every 'Prism' is a valid 'Traversal'. -- -- Every 'Iso' is a valid 'Prism'. -- -- For example, you might have a @'Prism'' 'Integer' 'Numeric.Natural.Natural'@ allows you to always -- go from a 'Numeric.Natural.Natural' to an 'Integer', and provide you with tools to check if an 'Integer' is -- a 'Numeric.Natural.Natural' and/or to edit one if it is. -- -- -- @ -- 'nat' :: 'Prism'' 'Integer' 'Numeric.Natural.Natural' -- 'nat' = 'Control.Lens.Prism.prism' 'toInteger' '$' \\ i -> -- if i '<' 0 -- then 'Left' i -- else 'Right' ('fromInteger' i) -- @ -- -- Now we can ask if an 'Integer' is a 'Numeric.Natural.Natural'. -- -- >>> 5^?nat -- Just 5 -- -- >>> (-5)^?nat -- Nothing -- -- We can update the ones that are: -- -- >>> (-3,4) & both.nat *~ 2 -- (-3,8) -- -- And we can then convert from a 'Numeric.Natural.Natural' to an 'Integer'. -- -- >>> 5 ^. re nat -- :: Natural -- 5 -- -- Similarly we can use a 'Prism' to 'Data.Traversable.traverse' the 'Left' half of an 'Either': -- -- >>> Left "hello" & _Left %~ length -- Left 5 -- -- or to construct an 'Either': -- -- >>> 5^.re _Left -- Left 5 -- -- such that if you query it with the 'Prism', you will get your original input back. -- -- >>> 5^.re _Left ^? _Left -- Just 5 -- -- Another interesting way to think of a 'Prism' is as the categorical dual of a 'Lens' -- -- a co-'Lens', so to speak. This is what permits the construction of 'Control.Lens.Prism.outside'. -- -- Note: Composition with a 'Prism' is index-preserving. type Prism s t a b = forall p f. (Choice p, Applicative f) => p a (f b) -> p s (f t) -- | A 'Simple' 'Prism'. type Prism' s a = Prism s s a a ------------------------------------------------------------------------------- -- Equality ------------------------------------------------------------------------------- -- | A witness that @(a ~ s, b ~ t)@. -- -- Note: Composition with an 'Equality' is index-preserving. type Equality (s :: k1) (t :: k2) (a :: k1) (b :: k2) = forall k3 (p :: k1 -> k3 -> Type) (f :: k2 -> k3) . p a (f b) -> p s (f t) -- | A 'Simple' 'Equality'. type Equality' s a = Equality s s a a -- | Composable `asTypeOf`. Useful for constraining excess -- polymorphism, @foo . (id :: As Int) . bar@. type As a = Equality' a a ------------------------------------------------------------------------------- -- Getters ------------------------------------------------------------------------------- -- | A 'Getter' describes how to retrieve a single value in a way that can be -- composed with other 'LensLike' constructions. -- -- Unlike a 'Lens' a 'Getter' is read-only. Since a 'Getter' -- cannot be used to write back there are no 'Lens' laws that can be applied to -- it. In fact, it is isomorphic to an arbitrary function from @(s -> a)@. -- -- Moreover, a 'Getter' can be used directly as a 'Control.Lens.Fold.Fold', -- since it just ignores the 'Applicative'. type Getter s a = forall f. (Contravariant f, Functor f) => (a -> f a) -> s -> f s -- | Every 'IndexedGetter' is a valid 'Control.Lens.Fold.IndexedFold' and can be used for 'Control.Lens.Getter.Getting' like a 'Getter'. type IndexedGetter i s a = forall p f. (Indexable i p, Contravariant f, Functor f) => p a (f a) -> s -> f s -- | An 'IndexPreservingGetter' can be used as a 'Getter', but when composed with an 'IndexedTraversal', -- 'IndexedFold', or 'IndexedLens' yields an 'IndexedFold', 'IndexedFold' or 'IndexedGetter' respectively. type IndexPreservingGetter s a = forall p f. (Conjoined p, Contravariant f, Functor f) => p a (f a) -> p s (f s) -------------------------- -- Folds -------------------------- -- | A 'Fold' describes how to retrieve multiple values in a way that can be composed -- with other 'LensLike' constructions. -- -- A @'Fold' s a@ provides a structure with operations very similar to those of the 'Data.Foldable.Foldable' -- typeclass, see 'Control.Lens.Fold.foldMapOf' and the other 'Fold' combinators. -- -- By convention, if there exists a 'foo' method that expects a @'Data.Foldable.Foldable' (f a)@, then there should be a -- @fooOf@ method that takes a @'Fold' s a@ and a value of type @s@. -- -- A 'Getter' is a legal 'Fold' that just ignores the supplied 'Data.Monoid.Monoid'. -- -- Unlike a 'Control.Lens.Traversal.Traversal' a 'Fold' is read-only. Since a 'Fold' cannot be used to write back -- there are no 'Lens' laws that apply. type Fold s a = forall f. (Contravariant f, Applicative f) => (a -> f a) -> s -> f s -- | Every 'IndexedFold' is a valid 'Control.Lens.Fold.Fold' and can be used for 'Control.Lens.Getter.Getting'. type IndexedFold i s a = forall p f. (Indexable i p, Contravariant f, Applicative f) => p a (f a) -> s -> f s -- | An 'IndexPreservingFold' can be used as a 'Fold', but when composed with an 'IndexedTraversal', -- 'IndexedFold', or 'IndexedLens' yields an 'IndexedFold' respectively. type IndexPreservingFold s a = forall p f. (Conjoined p, Contravariant f, Applicative f) => p a (f a) -> p s (f s) -- | A relevant Fold (aka 'Fold1') has one or more targets. type Fold1 s a = forall f. (Contravariant f, Apply f) => (a -> f a) -> s -> f s type IndexedFold1 i s a = forall p f. (Indexable i p, Contravariant f, Apply f) => p a (f a) -> s -> f s type IndexPreservingFold1 s a = forall p f. (Conjoined p, Contravariant f, Apply f) => p a (f a) -> p s (f s) ------------------------------------------------------------------------------- -- Simple Overloading ------------------------------------------------------------------------------- -- | A 'Simple' 'Lens', 'Simple' 'Traversal', ... can -- be used instead of a 'Lens','Traversal', ... -- whenever the type variables don't change upon setting a value. -- -- @ -- 'Data.Complex.Lens._imagPart' :: 'Simple' 'Lens' ('Data.Complex.Complex' a) a -- 'Control.Lens.Traversal.traversed' :: 'Simple' ('IndexedTraversal' 'Int') [a] a -- @ -- -- Note: To use this alias in your own code with @'LensLike' f@ or -- 'Setter', you may have to turn on @LiberalTypeSynonyms@. -- -- This is commonly abbreviated as a \"prime\" marker, /e.g./ 'Lens'' = 'Simple' 'Lens'. type Simple f s a = f s s a a ------------------------------------------------------------------------------- -- Optics ------------------------------------------------------------------------------- -- | A valid 'Optic' @l@ should satisfy the laws: -- -- @ -- l 'pure' ≡ 'pure' -- l ('Procompose' f g) = 'Procompose' (l f) (l g) -- @ -- -- This gives rise to the laws for 'Equality', 'Iso', 'Prism', 'Lens', -- 'Traversal', 'Traversal1', 'Setter', 'Fold', 'Fold1', and 'Getter' as well -- along with their index-preserving variants. -- -- @ -- type 'LensLike' f s t a b = 'Optic' (->) f s t a b -- @ type Optic p f s t a b = p a (f b) -> p s (f t) -- | @ -- type 'Optic'' p f s a = 'Simple' ('Optic' p f) s a -- @ type Optic' p f s a = Optic p f s s a a -- | @ -- type 'LensLike' f s t a b = 'Optical' (->) (->) f s t a b -- @ -- -- @ -- type 'Over' p f s t a b = 'Optical' p (->) f s t a b -- @ -- -- @ -- type 'Optic' p f s t a b = 'Optical' p p f s t a b -- @ type Optical p q f s t a b = p a (f b) -> q s (f t) -- | @ -- type 'Optical'' p q f s a = 'Simple' ('Optical' p q f) s a -- @ type Optical' p q f s a = Optical p q f s s a a -- | Many combinators that accept a 'Lens' can also accept a -- 'Traversal' in limited situations. -- -- They do so by specializing the type of 'Functor' that they require of the -- caller. -- -- If a function accepts a @'LensLike' f s t a b@ for some 'Functor' @f@, -- then they may be passed a 'Lens'. -- -- Further, if @f@ is an 'Applicative', they may also be passed a -- 'Traversal'. type LensLike f s t a b = (a -> f b) -> s -> f t -- | @ -- type 'LensLike'' f = 'Simple' ('LensLike' f) -- @ type LensLike' f s a = LensLike f s s a a -- | Convenient alias for constructing indexed lenses and their ilk. type IndexedLensLike i f s t a b = forall p. Indexable i p => p a (f b) -> s -> f t -- | Convenient alias for constructing simple indexed lenses and their ilk. type IndexedLensLike' i f s a = IndexedLensLike i f s s a a -- | This is a convenient alias for use when you need to consume either indexed or non-indexed lens-likes based on context. type Over p f s t a b = p a (f b) -> s -> f t -- | This is a convenient alias for use when you need to consume either indexed or non-indexed lens-likes based on context. -- -- @ -- type 'Over'' p f = 'Simple' ('Over' p f) -- @ type Over' p f s a = Over p f s s a a