Copyright | (C) 2008-2013 Edward Kmett |
---|---|
License | BSD-style (see the file LICENSE) |
Maintainer | Edward Kmett <ekmett@gmail.com> |
Stability | provisional |
Portability | MPTCs, fundeps |
Safe Haskell | Safe |
Language | Haskell2010 |
The free monad transformer
Synopsis
- data FreeF (f :: Type -> Type) a b
- newtype FreeT (f :: Type -> Type) (m :: Type -> Type) a = FreeT {}
- type Free (f :: Type -> Type) = FreeT f Identity
- free :: forall (f :: Type -> Type) a. FreeF f a (Free f a) -> Free f a
- runFree :: forall (f :: Type -> Type) a. Free f a -> FreeF f a (Free f a)
- liftF :: (Functor f, MonadFree f m) => f a -> m a
- iterT :: (Functor f, Monad m) => (f (m a) -> m a) -> FreeT f m a -> m a
- iterTM :: forall f (m :: Type -> Type) t a. (Functor f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> FreeT f m a -> t m a
- hoistFreeT :: forall m (f :: Type -> Type) n b. (Functor m, Functor f) => (forall a. m a -> n a) -> FreeT f m b -> FreeT f n b
- foldFreeT :: forall t (m :: Type -> Type) f a. (MonadTrans t, Monad (t m), Monad m) => (forall (n :: Type -> Type) x. Monad n => f x -> t n x) -> FreeT f m a -> t m a
- transFreeT :: forall (m :: Type -> Type) g f b. (Monad m, Functor g) => (forall a. f a -> g a) -> FreeT f m b -> FreeT g m b
- joinFreeT :: forall m (f :: Type -> Type) a. (Monad m, Traversable f) => FreeT f m a -> m (Free f a)
- cutoff :: forall (f :: Type -> Type) (m :: Type -> Type) a. (Functor f, Monad m) => Integer -> FreeT f m a -> FreeT f m (Maybe a)
- partialIterT :: Monad m => Integer -> (forall a. f a -> m a) -> FreeT f m b -> FreeT f m b
- intersperseT :: forall (m :: Type -> Type) f a b. (Monad m, Functor f) => f a -> FreeT f m b -> FreeT f m b
- intercalateT :: forall (m :: Type -> Type) t a b. (Monad m, MonadTrans t, Monad (t m)) => t m a -> FreeT (t m) m b -> t m b
- retractT :: forall t (m :: Type -> Type) a. (MonadTrans t, Monad (t m), Monad m) => FreeT (t m) m a -> t m a
- retract :: Monad f => Free f a -> f a
- iter :: Functor f => (f a -> a) -> Free f a -> a
- iterM :: (Functor f, Monad m) => (f (m a) -> m a) -> Free f a -> m a
- class Monad m => MonadFree (f :: Type -> Type) (m :: Type -> Type) | m -> f where
- wrap :: f (m a) -> m a
The base functor
data FreeF (f :: Type -> Type) a b Source #
The base functor for a free monad.
Instances
Generic1 (FreeF f a :: Type -> Type) Source # | |||||
Defined in Control.Monad.Trans.Free
| |||||
Foldable f => Bifoldable (FreeF f) Source # | |||||
Functor f => Bifunctor (FreeF f) Source # | |||||
Traversable f => Bitraversable (FreeF f) Source # | |||||
Defined in Control.Monad.Trans.Free bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> FreeF f a b -> f0 (FreeF f c d) # | |||||
Eq1 f => Eq2 (FreeF f) Source # | |||||
Ord1 f => Ord2 (FreeF f) Source # | |||||
Defined in Control.Monad.Trans.Free | |||||
Read1 f => Read2 (FreeF f) Source # | |||||
Defined in Control.Monad.Trans.Free liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (FreeF f a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [FreeF f a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (FreeF f a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [FreeF f a b] # | |||||
Show1 f => Show2 (FreeF f) Source # | |||||
Foldable f => Foldable (FreeF f a) Source # | |||||
Defined in Control.Monad.Trans.Free fold :: Monoid m => FreeF f a m -> m # foldMap :: Monoid m => (a0 -> m) -> FreeF f a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> FreeF f a a0 -> m # foldr :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b # foldl :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 # toList :: FreeF f a a0 -> [a0] # null :: FreeF f a a0 -> Bool # length :: FreeF f a a0 -> Int # elem :: Eq a0 => a0 -> FreeF f a a0 -> Bool # maximum :: Ord a0 => FreeF f a a0 -> a0 # minimum :: Ord a0 => FreeF f a a0 -> a0 # | |||||
(Eq1 f, Eq a) => Eq1 (FreeF f a) Source # | |||||
(Ord1 f, Ord a) => Ord1 (FreeF f a) Source # | |||||
Defined in Control.Monad.Trans.Free | |||||
(Read1 f, Read a) => Read1 (FreeF f a) Source # | |||||
Defined in Control.Monad.Trans.Free liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (FreeF f a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [FreeF f a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (FreeF f a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [FreeF f a a0] # | |||||
(Show1 f, Show a) => Show1 (FreeF f a) Source # | |||||
Traversable f => Traversable (FreeF f a) Source # | |||||
Defined in Control.Monad.Trans.Free | |||||
Functor f => Functor (FreeF f a) Source # | |||||
(Typeable f, Typeable b, Data a, Data (f b)) => Data (FreeF f a b) Source # | |||||
Defined in Control.Monad.Trans.Free gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> FreeF f a b -> c (FreeF f a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (FreeF f a b) # toConstr :: FreeF f a b -> Constr # dataTypeOf :: FreeF f a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (FreeF f a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (FreeF f a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> FreeF f a b -> FreeF f a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FreeF f a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FreeF f a b -> r # gmapQ :: (forall d. Data d => d -> u) -> FreeF f a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FreeF f a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FreeF f a b -> m (FreeF f a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FreeF f a b -> m (FreeF f a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FreeF f a b -> m (FreeF f a b) # | |||||
Generic (FreeF f a b) Source # | |||||
Defined in Control.Monad.Trans.Free
| |||||
(Read a, Read (f b)) => Read (FreeF f a b) Source # | |||||
(Show a, Show (f b)) => Show (FreeF f a b) Source # | |||||
(Eq a, Eq (f b)) => Eq (FreeF f a b) Source # | |||||
(Ord a, Ord (f b)) => Ord (FreeF f a b) Source # | |||||
Defined in Control.Monad.Trans.Free | |||||
type Rep1 (FreeF f a :: Type -> Type) Source # | |||||
Defined in Control.Monad.Trans.Free type Rep1 (FreeF f a :: Type -> Type) = D1 ('MetaData "FreeF" "Control.Monad.Trans.Free" "free-5.2-LmzEdwCIXEmChsYc63CoVW" 'False) (C1 ('MetaCons "Pure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Free" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f))) | |||||
type Rep (FreeF f a b) Source # | |||||
Defined in Control.Monad.Trans.Free type Rep (FreeF f a b) = D1 ('MetaData "FreeF" "Control.Monad.Trans.Free" "free-5.2-LmzEdwCIXEmChsYc63CoVW" 'False) (C1 ('MetaCons "Pure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Free" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f b)))) |
The free monad transformer
newtype FreeT (f :: Type -> Type) (m :: Type -> Type) a Source #
The "free monad transformer" for a functor f
Instances
The free monad
free :: forall (f :: Type -> Type) a. FreeF f a (Free f a) -> Free f a Source #
Pushes a layer into a free monad value.
runFree :: forall (f :: Type -> Type) a. Free f a -> FreeF f a (Free f a) Source #
Evaluates the first layer out of a free monad value.
Operations
liftF :: (Functor f, MonadFree f m) => f a -> m a Source #
A version of lift that can be used with just a Functor for f.
iterT :: (Functor f, Monad m) => (f (m a) -> m a) -> FreeT f m a -> m a Source #
Tear down a free monad transformer using iteration.
iterTM :: forall f (m :: Type -> Type) t a. (Functor f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> FreeT f m a -> t m a Source #
Tear down a free monad transformer using iteration over a transformer.
hoistFreeT :: forall m (f :: Type -> Type) n b. (Functor m, Functor f) => (forall a. m a -> n a) -> FreeT f m b -> FreeT f n b Source #
foldFreeT :: forall t (m :: Type -> Type) f a. (MonadTrans t, Monad (t m), Monad m) => (forall (n :: Type -> Type) x. Monad n => f x -> t n x) -> FreeT f m a -> t m a Source #
The very definition of a free monad transformer is that given a natural transformation you get a monad transformer homomorphism.
transFreeT :: forall (m :: Type -> Type) g f b. (Monad m, Functor g) => (forall a. f a -> g a) -> FreeT f m b -> FreeT g m b Source #
joinFreeT :: forall m (f :: Type -> Type) a. (Monad m, Traversable f) => FreeT f m a -> m (Free f a) Source #
Pull out and join m
layers of
.FreeT
f m a
cutoff :: forall (f :: Type -> Type) (m :: Type -> Type) a. (Functor f, Monad m) => Integer -> FreeT f m a -> FreeT f m (Maybe a) Source #
Cuts off a tree of computations at a given depth.
If the depth is 0
or less, no computation nor
monadic effects will take place.
Some examples (n ≥ 0
):
cutoff
0 _ ≡return
Nothing
cutoff
(n+1).
return
≡return
.
Just
cutoff
(n+1).
lift
≡lift
.
liftM
Just
cutoff
(n+1).
wrap
≡wrap
.
fmap
(cutoff
n)
Calling
is always terminating, provided each of the
steps in the iteration is terminating.retract
.
cutoff
n
partialIterT :: Monad m => Integer -> (forall a. f a -> m a) -> FreeT f m b -> FreeT f m b Source #
partialIterT n phi m
interprets first n
layers of m
using phi
.
This is sort of the opposite for
.cutoff
Some examples (n ≥ 0
):
partialIterT
0 _ m ≡ mpartialIterT
(n+1) phi.
return
≡return
partialIterT
(n+1) phi.
lift
≡lift
partialIterT
(n+1) phi.
wrap
≡join
.lift
. phi
intersperseT :: forall (m :: Type -> Type) f a b. (Monad m, Functor f) => f a -> FreeT f m b -> FreeT f m b Source #
intercalateT :: forall (m :: Type -> Type) t a b. (Monad m, MonadTrans t, Monad (t m)) => t m a -> FreeT (t m) m b -> t m b Source #
intercalateT f m
inserts a layer f
between every two layers in
m
and then retracts the result.
intercalateT
f ≡retractT
.intersperseT
f
retractT :: forall t (m :: Type -> Type) a. (MonadTrans t, Monad (t m), Monad m) => FreeT (t m) m a -> t m a Source #
Tear down a free monad transformer using Monad instance for t m
.
Operations of free monad
iterM :: (Functor f, Monad m) => (f (m a) -> m a) -> Free f a -> m a Source #
Like iter
for monadic values.
Free Monads With Class
class Monad m => MonadFree (f :: Type -> Type) (m :: Type -> Type) | m -> f where Source #
Monads provide substitution (fmap
) and renormalization (join
):
m>>=
f =join
(fmap
f m)
A free Monad
is one that does no work during the normalization step beyond simply grafting the two monadic values together.
[]
is not a free Monad
(in this sense) because
smashes the lists flat.join
[[a]]
On the other hand, consider:
data Tree a = Bin (Tree a) (Tree a) | Tip a
instanceMonad
Tree wherereturn
= Tip Tip a>>=
f = f a Bin l r>>=
f = Bin (l>>=
f) (r>>=
f)
This Monad
is the free Monad
of Pair:
data Pair a = Pair a a
And we could make an instance of MonadFree
for it directly:
instanceMonadFree
Pair Tree wherewrap
(Pair l r) = Bin l r
Or we could choose to program with
instead of Free
PairTree
and thereby avoid having to define our own Monad
instance.
Moreover, Control.Monad.Free.Church provides a MonadFree
instance that can improve the asymptotic complexity of code that
constructs free monads by effectively reassociating the use of
(>>=
). You may also want to take a look at the kan-extensions
package (http://hackage.haskell.org/package/kan-extensions).
See Free
for a more formal definition of the free Monad
for a Functor
.
Nothing