Copyright | (C) 2008-2015 Edward Kmett |
---|---|
License | BSD-style (see the file LICENSE) |
Maintainer | Edward Kmett <ekmett@gmail.com> |
Stability | provisional |
Portability | MPTCs, fundeps |
Safe Haskell | Safe |
Language | Haskell2010 |
Monads for free
Synopsis
- class Monad m => MonadFree (f :: Type -> Type) (m :: Type -> Type) | m -> f where
- wrap :: f (m a) -> m a
- data Free (f :: Type -> Type) a
- retract :: Monad f => Free f a -> f a
- liftF :: (Functor f, MonadFree f m) => f a -> m a
- iter :: Functor f => (f a -> a) -> Free f a -> a
- iterA :: (Applicative p, Functor f) => (f (p a) -> p a) -> Free f a -> p a
- iterM :: (Monad m, Functor f) => (f (m a) -> m a) -> Free f a -> m a
- hoistFree :: Functor g => (forall a. f a -> g a) -> Free f b -> Free g b
- foldFree :: Monad m => (forall x. f x -> m x) -> Free f a -> m a
- toFreeT :: forall (f :: Type -> Type) (m :: Type -> Type) a. (Functor f, Monad m) => Free f a -> FreeT f m a
- cutoff :: forall (f :: Type -> Type) a. Functor f => Integer -> Free f a -> Free f (Maybe a)
- unfold :: Functor f => (b -> Either a (f b)) -> b -> Free f a
- unfoldM :: (Traversable f, Monad m) => (b -> m (Either a (f b))) -> b -> m (Free f a)
- _Pure :: forall (f :: Type -> Type) m a p. (Choice p, Applicative m) => p a (m a) -> p (Free f a) (m (Free f a))
- _Free :: forall f g m a p. (Choice p, Applicative m) => p (f (Free f a)) (m (g (Free g a))) -> p (Free f a) (m (Free g a))
Documentation
class Monad m => MonadFree (f :: Type -> Type) (m :: Type -> Type) | m -> f where Source #
Monads provide substitution (fmap
) and renormalization (join
):
m>>=
f =join
(fmap
f m)
A free Monad
is one that does no work during the normalization step beyond simply grafting the two monadic values together.
[]
is not a free Monad
(in this sense) because
smashes the lists flat.join
[[a]]
On the other hand, consider:
data Tree a = Bin (Tree a) (Tree a) | Tip a
instanceMonad
Tree wherereturn
= Tip Tip a>>=
f = f a Bin l r>>=
f = Bin (l>>=
f) (r>>=
f)
This Monad
is the free Monad
of Pair:
data Pair a = Pair a a
And we could make an instance of MonadFree
for it directly:
instanceMonadFree
Pair Tree wherewrap
(Pair l r) = Bin l r
Or we could choose to program with
instead of Free
PairTree
and thereby avoid having to define our own Monad
instance.
Moreover, Control.Monad.Free.Church provides a MonadFree
instance that can improve the asymptotic complexity of code that
constructs free monads by effectively reassociating the use of
(>>=
). You may also want to take a look at the kan-extensions
package (http://hackage.haskell.org/package/kan-extensions).
See Free
for a more formal definition of the free Monad
for a Functor
.
Nothing
Instances
data Free (f :: Type -> Type) a Source #
The Free
Monad
for a Functor
f
.
Formally
A Monad
n
is a free Monad
for f
if every monad homomorphism
from n
to another monad m
is equivalent to a natural transformation
from f
to m
.
Why Free?
Every "free" functor is left adjoint to some "forgetful" functor.
If we define a forgetful functor U
from the category of monads to the category of functors
that just forgets the Monad
, leaving only the Functor
. i.e.
U (M,return
,join
) = M
then Free
is the left adjoint to U
.
Free
being left adjoint to U
means that there is an isomorphism between
in the category of monads and Free
f -> mf -> U m
in the category of functors.
Morphisms in the category of monads are Monad
homomorphisms (natural transformations that respect return
and join
).
Morphisms in the category of functors are Functor
homomorphisms (natural transformations).
Given this isomorphism, every monad homomorphism from
to Free
fm
is equivalent to a natural transformation from f
to m
Showing that this isomorphism holds is left as an exercise.
In practice, you can just view a
as many layers of Free
f af
wrapped around values of type a
, where
(
performs substitution and grafts new layers of >>=
)f
in for each of the free variables.
This can be very useful for modeling domain specific languages, trees, or other constructs.
This instance of MonadFree
is fairly naive about the encoding. For more efficient free monad implementation see Control.Monad.Free.Church, in particular note the improve
combinator.
You may also want to take a look at the kan-extensions
package (http://hackage.haskell.org/package/kan-extensions).
A number of common monads arise as free monads,
Instances
MonadTrans Free Source # | This is not a true monad transformer. It is only a monad transformer "up to | ||||
Defined in Control.Monad.Free | |||||
Functor f => Generic1 (Free f :: Type -> Type) Source # | |||||
Defined in Control.Monad.Free
| |||||
Functor f => MonadFree f (Free f) Source # | |||||
MonadError e m => MonadError e (Free m) Source # | |||||
Defined in Control.Monad.Free throwError :: e -> Free m a # catchError :: Free m a -> (e -> Free m a) -> Free m a # | |||||
MonadReader e m => MonadReader e (Free m) Source # | |||||
MonadState s m => MonadState s (Free m) Source # | |||||
MonadWriter e m => MonadWriter e (Free m) Source # | |||||
Functor f => MonadFix (Free f) Source # | |||||
Defined in Control.Monad.Free | |||||
Foldable f => Foldable (Free f) Source # | |||||
Defined in Control.Monad.Free fold :: Monoid m => Free f m -> m # foldMap :: Monoid m => (a -> m) -> Free f a -> m # foldMap' :: Monoid m => (a -> m) -> Free f a -> m # foldr :: (a -> b -> b) -> b -> Free f a -> b # foldr' :: (a -> b -> b) -> b -> Free f a -> b # foldl :: (b -> a -> b) -> b -> Free f a -> b # foldl' :: (b -> a -> b) -> b -> Free f a -> b # foldr1 :: (a -> a -> a) -> Free f a -> a # foldl1 :: (a -> a -> a) -> Free f a -> a # elem :: Eq a => a -> Free f a -> Bool # maximum :: Ord a => Free f a -> a # minimum :: Ord a => Free f a -> a # | |||||
Foldable1 f => Foldable1 (Free f) Source # | |||||
Defined in Control.Monad.Free fold1 :: Semigroup m => Free f m -> m # foldMap1 :: Semigroup m => (a -> m) -> Free f a -> m # foldMap1' :: Semigroup m => (a -> m) -> Free f a -> m # toNonEmpty :: Free f a -> NonEmpty a # maximum :: Ord a => Free f a -> a # minimum :: Ord a => Free f a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> Free f a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> Free f a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> Free f a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> Free f a -> b # | |||||
Eq1 f => Eq1 (Free f) Source # | |||||
Ord1 f => Ord1 (Free f) Source # | |||||
Defined in Control.Monad.Free | |||||
Read1 f => Read1 (Free f) Source # | |||||
Defined in Control.Monad.Free | |||||
Show1 f => Show1 (Free f) Source # | |||||
Traversable f => Traversable (Free f) Source # | |||||
Alternative v => Alternative (Free v) Source # | This violates the Alternative laws, handle with care. | ||||
Functor f => Applicative (Free f) Source # | |||||
Functor f => Functor (Free f) Source # | |||||
Functor f => Monad (Free f) Source # | |||||
MonadPlus v => MonadPlus (Free v) Source # | This violates the MonadPlus laws, handle with care. | ||||
MonadCont m => MonadCont (Free m) Source # | |||||
Functor f => Apply (Free f) Source # | |||||
Functor f => Bind (Free f) Source # | |||||
Traversable1 f => Traversable1 (Free f) Source # | |||||
FoldableWithIndex i f => FoldableWithIndex [i] (Free f) Source # | |||||
Defined in Control.Monad.Free | |||||
FunctorWithIndex i f => FunctorWithIndex [i] (Free f) Source # | |||||
Defined in Control.Monad.Free | |||||
TraversableWithIndex i f => TraversableWithIndex [i] (Free f) Source # | |||||
Defined in Control.Monad.Free itraverse :: Applicative f0 => ([i] -> a -> f0 b) -> Free f a -> f0 (Free f b) # | |||||
(Typeable f, Data (f (Free f a)), Data a) => Data (Free f a) Source # | |||||
Defined in Control.Monad.Free gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Free f a -> c (Free f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Free f a) # toConstr :: Free f a -> Constr # dataTypeOf :: Free f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Free f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Free f a)) # gmapT :: (forall b. Data b => b -> b) -> Free f a -> Free f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Free f a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Free f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Free f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Free f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Free f a -> m (Free f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Free f a -> m (Free f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Free f a -> m (Free f a) # | |||||
Generic (Free f a) Source # | |||||
Defined in Control.Monad.Free
| |||||
(Read1 f, Read a) => Read (Free f a) Source # | |||||
(Show1 f, Show a) => Show (Free f a) Source # | |||||
(Eq1 f, Eq a) => Eq (Free f a) Source # | |||||
(Ord1 f, Ord a) => Ord (Free f a) Source # | |||||
Defined in Control.Monad.Free | |||||
type Rep1 (Free f :: Type -> Type) Source # | |||||
Defined in Control.Monad.Free type Rep1 (Free f :: Type -> Type) = D1 ('MetaData "Free" "Control.Monad.Free" "free-5.2-LmzEdwCIXEmChsYc63CoVW" 'False) (C1 ('MetaCons "Pure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1) :+: C1 ('MetaCons "Free" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (f :.: Rec1 (Free f)))) | |||||
type Rep (Free f a) Source # | |||||
Defined in Control.Monad.Free type Rep (Free f a) = D1 ('MetaData "Free" "Control.Monad.Free" "free-5.2-LmzEdwCIXEmChsYc63CoVW" 'False) (C1 ('MetaCons "Pure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Free" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f (Free f a))))) |
liftF :: (Functor f, MonadFree f m) => f a -> m a Source #
A version of lift that can be used with just a Functor for f.
iterA :: (Applicative p, Functor f) => (f (p a) -> p a) -> Free f a -> p a Source #
Like iter
for applicative values.
iterM :: (Monad m, Functor f) => (f (m a) -> m a) -> Free f a -> m a Source #
Like iter
for monadic values.
foldFree :: Monad m => (forall x. f x -> m x) -> Free f a -> m a Source #
The very definition of a free monad is that given a natural transformation you get a monad homomorphism.
toFreeT :: forall (f :: Type -> Type) (m :: Type -> Type) a. (Functor f, Monad m) => Free f a -> FreeT f m a Source #
Convert a Free
monad from Control.Monad.Free to a FreeT
monad
from Control.Monad.Trans.Free.
cutoff :: forall (f :: Type -> Type) a. Functor f => Integer -> Free f a -> Free f (Maybe a) Source #
Cuts off a tree of computations at a given depth. If the depth is 0 or less, no computation nor monadic effects will take place.
Some examples (n ≥ 0):
cutoff 0 _ == return Nothing
cutoff (n+1) . return == return . Just
cutoff (n+1) . lift == lift . liftM Just
cutoff (n+1) . wrap == wrap . fmap (cutoff n)
Calling
is always terminating, provided each of the
steps in the iteration is terminating.retract
.
cutoff
n
unfold :: Functor f => (b -> Either a (f b)) -> b -> Free f a Source #
Unfold a free monad from a seed.
unfoldM :: (Traversable f, Monad m) => (b -> m (Either a (f b))) -> b -> m (Free f a) Source #
Unfold a free monad from a seed, monadically.
_Pure :: forall (f :: Type -> Type) m a p. (Choice p, Applicative m) => p a (m a) -> p (Free f a) (m (Free f a)) Source #
This is Prism' (Free f a) a
in disguise
>>>
preview _Pure (Pure 3)
Just 3
>>>
review _Pure 3 :: Free Maybe Int
Pure 3
_Free :: forall f g m a p. (Choice p, Applicative m) => p (f (Free f a)) (m (g (Free g a))) -> p (Free f a) (m (Free g a)) Source #
This is Prism (Free f a) (Free g a) (f (Free f a)) (g (Free g a))
in disguise
>>>
preview _Free (review _Free (Just (Pure 3)))
Just (Just (Pure 3))
>>>
review _Free (Just (Pure 3))
Free (Just (Pure 3))