{-# LANGUAGE CPP #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE PatternGuards #-}
#if defined(__GLASGOW_HASKELL__)
{-# LANGUAGE DeriveLift #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeFamilies #-}
#endif
#define USE_MAGIC_PROXY 1
#ifdef USE_MAGIC_PROXY
{-# LANGUAGE MagicHash #-}
#endif
{-# OPTIONS_HADDOCK not-home #-}
#include "containers.h"
#if !(WORD_SIZE_IN_BITS >= 61)
#define DEFINE_ALTERF_FALLBACK 1
#endif
module Data.Map.Internal (
Map(..)
, Size
, (!), (!?), (\\)
, null
, size
, member
, notMember
, lookup
, findWithDefault
, lookupLT
, lookupGT
, lookupLE
, lookupGE
, empty
, singleton
, insert
, insertWith
, insertWithKey
, insertLookupWithKey
, delete
, adjust
, adjustWithKey
, update
, updateWithKey
, updateLookupWithKey
, alter
, alterF
, union
, unionWith
, unionWithKey
, unions
, unionsWith
, difference
, differenceWith
, differenceWithKey
, intersection
, intersectionWith
, intersectionWithKey
, disjoint
, compose
, SimpleWhenMissing
, SimpleWhenMatched
, runWhenMatched
, runWhenMissing
, merge
, zipWithMaybeMatched
, zipWithMatched
, mapMaybeMissing
, dropMissing
, preserveMissing
, preserveMissing'
, mapMissing
, filterMissing
, WhenMissing (..)
, WhenMatched (..)
, mergeA
, zipWithMaybeAMatched
, zipWithAMatched
, traverseMaybeMissing
, traverseMissing
, filterAMissing
, mergeWithKey
, map
, mapWithKey
, traverseWithKey
, traverseMaybeWithKey
, mapAccum
, mapAccumWithKey
, mapAccumRWithKey
, mapKeys
, mapKeysWith
, mapKeysMonotonic
, foldr
, foldl
, foldrWithKey
, foldlWithKey
, foldMapWithKey
, foldr'
, foldl'
, foldrWithKey'
, foldlWithKey'
, elems
, keys
, assocs
, keysSet
, argSet
, fromSet
, fromArgSet
, toList
, fromList
, fromListWith
, fromListWithKey
, toAscList
, toDescList
, fromAscList
, fromAscListWith
, fromAscListWithKey
, fromDistinctAscList
, fromDescList
, fromDescListWith
, fromDescListWithKey
, fromDistinctDescList
, filter
, filterWithKey
, takeWhileAntitone
, dropWhileAntitone
, spanAntitone
, restrictKeys
, withoutKeys
, partition
, partitionWithKey
, mapMaybe
, mapMaybeWithKey
, mapEither
, mapEitherWithKey
, split
, splitLookup
, splitRoot
, isSubmapOf, isSubmapOfBy
, isProperSubmapOf, isProperSubmapOfBy
, lookupIndex
, findIndex
, elemAt
, updateAt
, deleteAt
, take
, drop
, splitAt
, lookupMin
, lookupMax
, findMin
, findMax
, deleteMin
, deleteMax
, deleteFindMin
, deleteFindMax
, updateMin
, updateMax
, updateMinWithKey
, updateMaxWithKey
, minView
, maxView
, minViewWithKey
, maxViewWithKey
, AreWeStrict (..)
, atKeyImpl
#ifdef __GLASGOW_HASKELL__
, atKeyPlain
#endif
, bin
, balance
, balanceL
, balanceR
, delta
, insertMax
, link
, link2
, glue
, fromDistinctAscList_linkTop
, fromDistinctAscList_linkAll
, fromDistinctDescList_linkTop
, fromDistinctDescList_linkAll
, MaybeS(..)
, Identity(..)
, FromDistinctMonoState(..)
, Stack(..)
, foldl'Stack
, mapWhenMissing
, mapWhenMatched
, lmapWhenMissing
, contramapFirstWhenMatched
, contramapSecondWhenMatched
, mapGentlyWhenMissing
, mapGentlyWhenMatched
) where
import Data.Functor.Identity (Identity (..))
import Control.Applicative (liftA3)
import Data.Functor.Classes
import Data.Semigroup (stimesIdempotentMonoid)
import Data.Semigroup (Arg(..), Semigroup(stimes))
#if !(MIN_VERSION_base(4,11,0))
import Data.Semigroup (Semigroup((<>)))
#endif
import Control.Applicative (Const (..))
import Control.DeepSeq (NFData(rnf))
import Data.Bits (shiftL, shiftR)
import qualified Data.Foldable as Foldable
import Data.Bifoldable
import Utils.Containers.Internal.Prelude hiding
(lookup, map, filter, foldr, foldl, foldl', null, splitAt, take, drop)
import Prelude ()
import qualified Data.Set.Internal as Set
import Data.Set.Internal (Set)
import Utils.Containers.Internal.PtrEquality (ptrEq)
import Utils.Containers.Internal.StrictPair
import Utils.Containers.Internal.StrictMaybe
import Utils.Containers.Internal.BitQueue
#ifdef DEFINE_ALTERF_FALLBACK
import Utils.Containers.Internal.BitUtil (wordSize)
#endif
#if __GLASGOW_HASKELL__
import GHC.Exts (build, lazy)
import Language.Haskell.TH.Syntax (Lift)
import Language.Haskell.TH ()
# ifdef USE_MAGIC_PROXY
import GHC.Exts (Proxy#, proxy# )
# endif
import qualified GHC.Exts as GHCExts
import Text.Read hiding (lift)
import Data.Data
import qualified Control.Category as Category
import Data.Coerce
#endif
infixl 9 !,!?,\\
(!) :: Ord k => Map k a -> k -> a
! :: forall k a. Ord k => Map k a -> k -> a
(!) Map k a
m k
k = k -> Map k a -> a
forall k a. Ord k => k -> Map k a -> a
find k
k Map k a
m
#if __GLASGOW_HASKELL__
{-# INLINE (!) #-}
#endif
(!?) :: Ord k => Map k a -> k -> Maybe a
!? :: forall k a. Ord k => Map k a -> k -> Maybe a
(!?) Map k a
m k
k = k -> Map k a -> Maybe a
forall k a. Ord k => k -> Map k a -> Maybe a
lookup k
k Map k a
m
#if __GLASGOW_HASKELL__
{-# INLINE (!?) #-}
#endif
(\\) :: Ord k => Map k a -> Map k b -> Map k a
Map k a
m1 \\ :: forall k a b. Ord k => Map k a -> Map k b -> Map k a
\\ Map k b
m2 = Map k a -> Map k b -> Map k a
forall k a b. Ord k => Map k a -> Map k b -> Map k a
difference Map k a
m1 Map k b
m2
#if __GLASGOW_HASKELL__
{-# INLINE (\\) #-}
#endif
data Map k a = Bin {-# UNPACK #-} !Size !k a !(Map k a) !(Map k a)
| Tip
type Size = Int
#ifdef __GLASGOW_HASKELL__
type role Map nominal representational
#endif
#ifdef __GLASGOW_HASKELL__
deriving instance (Lift k, Lift a) => Lift (Map k a)
#endif
instance (Ord k) => Monoid (Map k v) where
mempty :: Map k v
mempty = Map k v
forall k a. Map k a
empty
mconcat :: [Map k v] -> Map k v
mconcat = [Map k v] -> Map k v
forall (f :: * -> *) k a.
(Foldable f, Ord k) =>
f (Map k a) -> Map k a
unions
mappend :: Map k v -> Map k v -> Map k v
mappend = Map k v -> Map k v -> Map k v
forall a. Semigroup a => a -> a -> a
(<>)
instance (Ord k) => Semigroup (Map k v) where
<> :: Map k v -> Map k v -> Map k v
(<>) = Map k v -> Map k v -> Map k v
forall k v. Ord k => Map k v -> Map k v -> Map k v
union
stimes :: forall b. Integral b => b -> Map k v -> Map k v
stimes = b -> Map k v -> Map k v
forall b a. (Integral b, Monoid a) => b -> a -> a
stimesIdempotentMonoid
#if __GLASGOW_HASKELL__
instance (Data k, Data a, Ord k) => Data (Map k a) where
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Map k a -> c (Map k a)
gfoldl forall d b. Data d => c (d -> b) -> d -> c b
f forall g. g -> c g
z Map k a
m = ([(k, a)] -> Map k a) -> c ([(k, a)] -> Map k a)
forall g. g -> c g
z [(k, a)] -> Map k a
forall k a. Ord k => [(k, a)] -> Map k a
fromList c ([(k, a)] -> Map k a) -> [(k, a)] -> c (Map k a)
forall d b. Data d => c (d -> b) -> d -> c b
`f` Map k a -> [(k, a)]
forall k a. Map k a -> [(k, a)]
toList Map k a
m
toConstr :: Map k a -> Constr
toConstr Map k a
_ = Constr
fromListConstr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Map k a)
gunfold forall b r. Data b => c (b -> r) -> c r
k forall r. r -> c r
z Constr
c = case Constr -> Size
constrIndex Constr
c of
Size
1 -> c ([(k, a)] -> Map k a) -> c (Map k a)
forall b r. Data b => c (b -> r) -> c r
k (([(k, a)] -> Map k a) -> c ([(k, a)] -> Map k a)
forall r. r -> c r
z [(k, a)] -> Map k a
forall k a. Ord k => [(k, a)] -> Map k a
fromList)
Size
_ -> [Char] -> c (Map k a)
forall a. HasCallStack => [Char] -> a
error [Char]
"gunfold"
dataTypeOf :: Map k a -> DataType
dataTypeOf Map k a
_ = DataType
mapDataType
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a))
dataCast2 forall d e. (Data d, Data e) => c (t d e)
f = c (t k a) -> Maybe (c (Map k a))
forall {k1} {k2} {k3} (c :: k1 -> *) (t :: k2 -> k3 -> k1)
(t' :: k2 -> k3 -> k1) (a :: k2) (b :: k3).
(Typeable t, Typeable t') =>
c (t a b) -> Maybe (c (t' a b))
gcast2 c (t k a)
forall d e. (Data d, Data e) => c (t d e)
f
fromListConstr :: Constr
fromListConstr :: Constr
fromListConstr = DataType -> [Char] -> [[Char]] -> Fixity -> Constr
mkConstr DataType
mapDataType [Char]
"fromList" [] Fixity
Prefix
mapDataType :: DataType
mapDataType :: DataType
mapDataType = [Char] -> [Constr] -> DataType
mkDataType [Char]
"Data.Map.Internal.Map" [Constr
fromListConstr]
#endif
null :: Map k a -> Bool
null :: forall k a. Map k a -> Bool
null Map k a
Tip = Bool
True
null (Bin {}) = Bool
False
{-# INLINE null #-}
size :: Map k a -> Int
size :: forall k a. Map k a -> Size
size Map k a
Tip = Size
0
size (Bin Size
sz k
_ a
_ Map k a
_ Map k a
_) = Size
sz
{-# INLINE size #-}
lookup :: Ord k => k -> Map k a -> Maybe a
lookup :: forall k a. Ord k => k -> Map k a -> Maybe a
lookup = k -> Map k a -> Maybe a
forall k a. Ord k => k -> Map k a -> Maybe a
go
where
go :: t -> Map t a -> Maybe a
go !t
_ Map t a
Tip = Maybe a
forall a. Maybe a
Nothing
go t
k (Bin Size
_ t
kx a
x Map t a
l Map t a
r) = case t -> t -> Ordering
forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of
Ordering
LT -> t -> Map t a -> Maybe a
go t
k Map t a
l
Ordering
GT -> t -> Map t a -> Maybe a
go t
k Map t a
r
Ordering
EQ -> a -> Maybe a
forall a. a -> Maybe a
Just a
x
#if __GLASGOW_HASKELL__
{-# INLINABLE lookup #-}
#else
{-# INLINE lookup #-}
#endif
member :: Ord k => k -> Map k a -> Bool
member :: forall k a. Ord k => k -> Map k a -> Bool
member = k -> Map k a -> Bool
forall k a. Ord k => k -> Map k a -> Bool
go
where
go :: t -> Map t a -> Bool
go !t
_ Map t a
Tip = Bool
False
go t
k (Bin Size
_ t
kx a
_ Map t a
l Map t a
r) = case t -> t -> Ordering
forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of
Ordering
LT -> t -> Map t a -> Bool
go t
k Map t a
l
Ordering
GT -> t -> Map t a -> Bool
go t
k Map t a
r
Ordering
EQ -> Bool
True
#if __GLASGOW_HASKELL__
{-# INLINABLE member #-}
#else
{-# INLINE member #-}
#endif
notMember :: Ord k => k -> Map k a -> Bool
notMember :: forall k a. Ord k => k -> Map k a -> Bool
notMember k
k Map k a
m = Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ k -> Map k a -> Bool
forall k a. Ord k => k -> Map k a -> Bool
member k
k Map k a
m
#if __GLASGOW_HASKELL__
{-# INLINABLE notMember #-}
#else
{-# INLINE notMember #-}
#endif
find :: Ord k => k -> Map k a -> a
find :: forall k a. Ord k => k -> Map k a -> a
find = k -> Map k a -> a
forall k a. Ord k => k -> Map k a -> a
go
where
go :: t -> Map t a -> a
go !t
_ Map t a
Tip = [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.!: given key is not an element in the map"
go t
k (Bin Size
_ t
kx a
x Map t a
l Map t a
r) = case t -> t -> Ordering
forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of
Ordering
LT -> t -> Map t a -> a
go t
k Map t a
l
Ordering
GT -> t -> Map t a -> a
go t
k Map t a
r
Ordering
EQ -> a
x
#if __GLASGOW_HASKELL__
{-# INLINABLE find #-}
#else
{-# INLINE find #-}
#endif
findWithDefault :: Ord k => a -> k -> Map k a -> a
findWithDefault :: forall k a. Ord k => a -> k -> Map k a -> a
findWithDefault = a -> k -> Map k a -> a
forall k a. Ord k => a -> k -> Map k a -> a
go
where
go :: t -> t -> Map t t -> t
go t
def !t
_ Map t t
Tip = t
def
go t
def t
k (Bin Size
_ t
kx t
x Map t t
l Map t t
r) = case t -> t -> Ordering
forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of
Ordering
LT -> t -> t -> Map t t -> t
go t
def t
k Map t t
l
Ordering
GT -> t -> t -> Map t t -> t
go t
def t
k Map t t
r
Ordering
EQ -> t
x
#if __GLASGOW_HASKELL__
{-# INLINABLE findWithDefault #-}
#else
{-# INLINE findWithDefault #-}
#endif
lookupLT :: Ord k => k -> Map k v -> Maybe (k, v)
lookupLT :: forall k v. Ord k => k -> Map k v -> Maybe (k, v)
lookupLT = k -> Map k v -> Maybe (k, v)
forall k v. Ord k => k -> Map k v -> Maybe (k, v)
goNothing
where
goNothing :: t -> Map t t -> Maybe (t, t)
goNothing !t
_ Map t t
Tip = Maybe (t, t)
forall a. Maybe a
Nothing
goNothing t
k (Bin Size
_ t
kx t
x Map t t
l Map t t
r) | t
k t -> t -> Bool
forall a. Ord a => a -> a -> Bool
<= t
kx = t -> Map t t -> Maybe (t, t)
goNothing t
k Map t t
l
| Bool
otherwise = t -> t -> t -> Map t t -> Maybe (t, t)
forall {t} {t}. Ord t => t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx t
x Map t t
r
goJust :: t -> t -> t -> Map t t -> Maybe (t, t)
goJust !t
_ t
kx' t
x' Map t t
Tip = (t, t) -> Maybe (t, t)
forall a. a -> Maybe a
Just (t
kx', t
x')
goJust t
k t
kx' t
x' (Bin Size
_ t
kx t
x Map t t
l Map t t
r) | t
k t -> t -> Bool
forall a. Ord a => a -> a -> Bool
<= t
kx = t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx' t
x' Map t t
l
| Bool
otherwise = t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx t
x Map t t
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupLT #-}
#else
{-# INLINE lookupLT #-}
#endif
lookupGT :: Ord k => k -> Map k v -> Maybe (k, v)
lookupGT :: forall k v. Ord k => k -> Map k v -> Maybe (k, v)
lookupGT = k -> Map k v -> Maybe (k, v)
forall k v. Ord k => k -> Map k v -> Maybe (k, v)
goNothing
where
goNothing :: t -> Map t t -> Maybe (t, t)
goNothing !t
_ Map t t
Tip = Maybe (t, t)
forall a. Maybe a
Nothing
goNothing t
k (Bin Size
_ t
kx t
x Map t t
l Map t t
r) | t
k t -> t -> Bool
forall a. Ord a => a -> a -> Bool
< t
kx = t -> t -> t -> Map t t -> Maybe (t, t)
forall {t} {t}. Ord t => t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx t
x Map t t
l
| Bool
otherwise = t -> Map t t -> Maybe (t, t)
goNothing t
k Map t t
r
goJust :: t -> t -> t -> Map t t -> Maybe (t, t)
goJust !t
_ t
kx' t
x' Map t t
Tip = (t, t) -> Maybe (t, t)
forall a. a -> Maybe a
Just (t
kx', t
x')
goJust t
k t
kx' t
x' (Bin Size
_ t
kx t
x Map t t
l Map t t
r) | t
k t -> t -> Bool
forall a. Ord a => a -> a -> Bool
< t
kx = t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx t
x Map t t
l
| Bool
otherwise = t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx' t
x' Map t t
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupGT #-}
#else
{-# INLINE lookupGT #-}
#endif
lookupLE :: Ord k => k -> Map k v -> Maybe (k, v)
lookupLE :: forall k v. Ord k => k -> Map k v -> Maybe (k, v)
lookupLE = k -> Map k v -> Maybe (k, v)
forall k v. Ord k => k -> Map k v -> Maybe (k, v)
goNothing
where
goNothing :: a -> Map a b -> Maybe (a, b)
goNothing !a
_ Map a b
Tip = Maybe (a, b)
forall a. Maybe a
Nothing
goNothing a
k (Bin Size
_ a
kx b
x Map a b
l Map a b
r) = case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
k a
kx of Ordering
LT -> a -> Map a b -> Maybe (a, b)
goNothing a
k Map a b
l
Ordering
EQ -> (a, b) -> Maybe (a, b)
forall a. a -> Maybe a
Just (a
kx, b
x)
Ordering
GT -> a -> a -> b -> Map a b -> Maybe (a, b)
forall {t} {t}. Ord t => t -> t -> t -> Map t t -> Maybe (t, t)
goJust a
k a
kx b
x Map a b
r
goJust :: t -> t -> t -> Map t t -> Maybe (t, t)
goJust !t
_ t
kx' t
x' Map t t
Tip = (t, t) -> Maybe (t, t)
forall a. a -> Maybe a
Just (t
kx', t
x')
goJust t
k t
kx' t
x' (Bin Size
_ t
kx t
x Map t t
l Map t t
r) = case t -> t -> Ordering
forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of Ordering
LT -> t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx' t
x' Map t t
l
Ordering
EQ -> (t, t) -> Maybe (t, t)
forall a. a -> Maybe a
Just (t
kx, t
x)
Ordering
GT -> t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx t
x Map t t
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupLE #-}
#else
{-# INLINE lookupLE #-}
#endif
lookupGE :: Ord k => k -> Map k v -> Maybe (k, v)
lookupGE :: forall k v. Ord k => k -> Map k v -> Maybe (k, v)
lookupGE = k -> Map k v -> Maybe (k, v)
forall k v. Ord k => k -> Map k v -> Maybe (k, v)
goNothing
where
goNothing :: t -> Map t b -> Maybe (t, b)
goNothing !t
_ Map t b
Tip = Maybe (t, b)
forall a. Maybe a
Nothing
goNothing t
k (Bin Size
_ t
kx b
x Map t b
l Map t b
r) = case t -> t -> Ordering
forall a. Ord a => a -> a -> Ordering
compare t
k t
kx of Ordering
LT -> t -> t -> b -> Map t b -> Maybe (t, b)
forall {t} {t}. Ord t => t -> t -> t -> Map t t -> Maybe (t, t)
goJust t
k t
kx b
x Map t b
l
Ordering
EQ -> (t, b) -> Maybe (t, b)
forall a. a -> Maybe a
Just (t
kx, b
x)
Ordering
GT -> t -> Map t b -> Maybe (t, b)
goNothing t
k Map t b
r
goJust :: a -> a -> b -> Map a b -> Maybe (a, b)
goJust !a
_ a
kx' b
x' Map a b
Tip = (a, b) -> Maybe (a, b)
forall a. a -> Maybe a
Just (a
kx', b
x')
goJust a
k a
kx' b
x' (Bin Size
_ a
kx b
x Map a b
l Map a b
r) = case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
k a
kx of Ordering
LT -> a -> a -> b -> Map a b -> Maybe (a, b)
goJust a
k a
kx b
x Map a b
l
Ordering
EQ -> (a, b) -> Maybe (a, b)
forall a. a -> Maybe a
Just (a
kx, b
x)
Ordering
GT -> a -> a -> b -> Map a b -> Maybe (a, b)
goJust a
k a
kx' b
x' Map a b
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupGE #-}
#else
{-# INLINE lookupGE #-}
#endif
empty :: Map k a
empty :: forall k a. Map k a
empty = Map k a
forall k a. Map k a
Tip
{-# INLINE empty #-}
singleton :: k -> a -> Map k a
singleton :: forall k a. k -> a -> Map k a
singleton k
k a
x = Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip
{-# INLINE singleton #-}
insert :: Ord k => k -> a -> Map k a -> Map k a
insert :: forall k a. Ord k => k -> a -> Map k a -> Map k a
insert k
kx0 = k -> k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
kx0 k
kx0
where
go :: Ord k => k -> k -> a -> Map k a -> Map k a
go :: forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig !k
_ a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton (k -> k
forall a. a -> a
lazy k
orig) a
x
go k
orig !k
kx a
x t :: Map k a
t@(Bin Size
sz k
ky a
y Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT | Map k a
l' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l -> Map k a
t
| Bool
otherwise -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y Map k a
l' Map k a
r
where !l' :: Map k a
l' = k -> k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig k
kx a
x Map k a
l
Ordering
GT | Map k a
r' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r -> Map k a
t
| Bool
otherwise -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l Map k a
r'
where !r' :: Map k a
r' = k -> k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig k
kx a
x Map k a
r
Ordering
EQ | a
x a -> a -> Bool
forall a. a -> a -> Bool
`ptrEq` a
y Bool -> Bool -> Bool
&& (k -> k
forall a. a -> a
lazy k
orig k -> Bool -> Bool
forall a b. a -> b -> b
`seq` (k
orig k -> k -> Bool
forall a. a -> a -> Bool
`ptrEq` k
ky)) -> Map k a
t
| Bool
otherwise -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz (k -> k
forall a. a -> a
lazy k
orig) a
x Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insert #-}
#else
{-# INLINE insert #-}
#endif
#ifndef __GLASGOW_HASKELL__
lazy :: a -> a
lazy a = a
#endif
insertR :: Ord k => k -> a -> Map k a -> Map k a
insertR :: forall k a. Ord k => k -> a -> Map k a -> Map k a
insertR k
kx0 = k -> k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
kx0 k
kx0
where
go :: Ord k => k -> k -> a -> Map k a -> Map k a
go :: forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig !k
_ a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton (k -> k
forall a. a -> a
lazy k
orig) a
x
go k
orig !k
kx a
x t :: Map k a
t@(Bin Size
_ k
ky a
y Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT | Map k a
l' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l -> Map k a
t
| Bool
otherwise -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y Map k a
l' Map k a
r
where !l' :: Map k a
l' = k -> k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig k
kx a
x Map k a
l
Ordering
GT | Map k a
r' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r -> Map k a
t
| Bool
otherwise -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l Map k a
r'
where !r' :: Map k a
r' = k -> k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> k -> a -> Map k a -> Map k a
go k
orig k
kx a
x Map k a
r
Ordering
EQ -> Map k a
t
#if __GLASGOW_HASKELL__
{-# INLINABLE insertR #-}
#else
{-# INLINE insertR #-}
#endif
insertWith :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWith :: forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWith = (a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go
where
go :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go :: forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
_ !k
kx a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
go a -> a -> a
f !k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y ((a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l ((a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
r)
Ordering
EQ -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
kx (a -> a -> a
f a
x a
y) Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insertWith #-}
#else
{-# INLINE insertWith #-}
#endif
insertWithR :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithR :: forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithR = (a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go
where
go :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go :: forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
_ !k
kx a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
go a -> a -> a
f !k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y ((a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l ((a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
r)
Ordering
EQ -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
ky (a -> a -> a
f a
y a
x) Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insertWithR #-}
#else
{-# INLINE insertWithR #-}
#endif
insertWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey :: forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey = (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go
where
go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go :: forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
_ !k
kx a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
go k -> a -> a -> a
f k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y ((k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l ((k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
r)
Ordering
EQ -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
kx (k -> a -> a -> a
f k
kx a
x a
y) Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insertWithKey #-}
#else
{-# INLINE insertWithKey #-}
#endif
insertWithKeyR :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKeyR :: forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKeyR = (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go
where
go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go :: forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
_ !k
kx a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
go k -> a -> a -> a
f k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y ((k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l ((k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
r)
Ordering
EQ -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
ky (k -> a -> a -> a
f k
ky a
y a
x) Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insertWithKeyR #-}
#else
{-# INLINE insertWithKeyR #-}
#endif
insertLookupWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a
-> (Maybe a, Map k a)
insertLookupWithKey :: forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> (Maybe a, Map k a)
insertLookupWithKey k -> a -> a -> a
f0 k
k0 a
x0 = StrictPair (Maybe a) (Map k a) -> (Maybe a, Map k a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (Maybe a) (Map k a) -> (Maybe a, Map k a))
-> (Map k a -> StrictPair (Maybe a) (Map k a))
-> Map k a
-> (Maybe a, Map k a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
f0 k
k0 a
x0
where
go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go :: forall k a.
Ord k =>
(k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
_ !k
kx a
x Map k a
Tip = (Maybe a
forall a. Maybe a
Nothing Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x)
go k -> a -> a -> a
f k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> let !(Maybe a
found :*: Map k a
l') = (k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
f k
kx a
x Map k a
l
!t' :: Map k a
t' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y Map k a
l' Map k a
r
in (Maybe a
found Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
t')
Ordering
GT -> let !(Maybe a
found :*: Map k a
r') = (k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
f k
kx a
x Map k a
r
!t' :: Map k a
t' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l Map k a
r'
in (Maybe a
found Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
t')
Ordering
EQ -> (a -> Maybe a
forall a. a -> Maybe a
Just a
y Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
kx (k -> a -> a -> a
f k
kx a
x a
y) Map k a
l Map k a
r)
#if __GLASGOW_HASKELL__
{-# INLINABLE insertLookupWithKey #-}
#else
{-# INLINE insertLookupWithKey #-}
#endif
delete :: Ord k => k -> Map k a -> Map k a
delete :: forall k a. Ord k => k -> Map k a -> Map k a
delete = k -> Map k a -> Map k a
forall k a. Ord k => k -> Map k a -> Map k a
go
where
go :: Ord k => k -> Map k a -> Map k a
go :: forall k a. Ord k => k -> Map k a -> Map k a
go !k
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
go k
k t :: Map k a
t@(Bin Size
_ k
kx a
x Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT | Map k a
l' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l -> Map k a
t
| Bool
otherwise -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
l' Map k a
r
where !l' :: Map k a
l' = k -> Map k a -> Map k a
forall k a. Ord k => k -> Map k a -> Map k a
go k
k Map k a
l
Ordering
GT | Map k a
r' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r -> Map k a
t
| Bool
otherwise -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l Map k a
r'
where !r' :: Map k a
r' = k -> Map k a -> Map k a
forall k a. Ord k => k -> Map k a -> Map k a
go k
k Map k a
r
Ordering
EQ -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE delete #-}
#else
{-# INLINE delete #-}
#endif
adjust :: Ord k => (a -> a) -> k -> Map k a -> Map k a
adjust :: forall k a. Ord k => (a -> a) -> k -> Map k a -> Map k a
adjust a -> a
f = (k -> a -> a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
adjustWithKey (\k
_ a
x -> a -> a
f a
x)
#if __GLASGOW_HASKELL__
{-# INLINABLE adjust #-}
#else
{-# INLINE adjust #-}
#endif
adjustWithKey :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
adjustWithKey :: forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
adjustWithKey = (k -> a -> a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go
where
go :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go :: forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go k -> a -> a
_ !k
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
go k -> a -> a
f k
k (Bin Size
sx k
kx a
x Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x ((k -> a -> a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go k -> a -> a
f k
k Map k a
l) Map k a
r
Ordering
GT -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x Map k a
l ((k -> a -> a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go k -> a -> a
f k
k Map k a
r)
Ordering
EQ -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx (k -> a -> a
f k
kx a
x) Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE adjustWithKey #-}
#else
{-# INLINE adjustWithKey #-}
#endif
update :: Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a
update :: forall k a. Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a
update a -> Maybe a
f = (k -> a -> Maybe a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
updateWithKey (\k
_ a
x -> a -> Maybe a
f a
x)
#if __GLASGOW_HASKELL__
{-# INLINABLE update #-}
#else
{-# INLINE update #-}
#endif
updateWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
updateWithKey :: forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
updateWithKey = (k -> a -> Maybe a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go
where
go :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go :: forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go k -> a -> Maybe a
_ !k
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
go k -> a -> Maybe a
f k
k(Bin Size
sx k
kx a
x Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x ((k -> a -> Maybe a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go k -> a -> Maybe a
f k
k Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l ((k -> a -> Maybe a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go k -> a -> Maybe a
f k
k Map k a
r)
Ordering
EQ -> case k -> a -> Maybe a
f k
kx a
x of
Just a
x' -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
Maybe a
Nothing -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE updateWithKey #-}
#else
{-# INLINE updateWithKey #-}
#endif
updateLookupWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a,Map k a)
updateLookupWithKey :: forall k a.
Ord k =>
(k -> a -> Maybe a) -> k -> Map k a -> (Maybe a, Map k a)
updateLookupWithKey k -> a -> Maybe a
f0 k
k0 = StrictPair (Maybe a) (Map k a) -> (Maybe a, Map k a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (Maybe a) (Map k a) -> (Maybe a, Map k a))
-> (Map k a -> StrictPair (Maybe a) (Map k a))
-> Map k a
-> (Maybe a, Map k a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
f0 k
k0
where
go :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go :: forall k a.
Ord k =>
(k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
_ !k
_ Map k a
Tip = (Maybe a
forall a. Maybe a
Nothing Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
forall k a. Map k a
Tip)
go k -> a -> Maybe a
f k
k (Bin Size
sx k
kx a
x Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> let !(Maybe a
found :*: Map k a
l') = (k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
f k
k Map k a
l
!t' :: Map k a
t' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
l' Map k a
r
in (Maybe a
found Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
t')
Ordering
GT -> let !(Maybe a
found :*: Map k a
r') = (k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
f k
k Map k a
r
!t' :: Map k a
t' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l Map k a
r'
in (Maybe a
found Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
t')
Ordering
EQ -> case k -> a -> Maybe a
f k
kx a
x of
Just a
x' -> (a -> Maybe a
forall a. a -> Maybe a
Just a
x' Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r)
Maybe a
Nothing -> let !glued :: Map k a
glued = Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
in (a -> Maybe a
forall a. a -> Maybe a
Just a
x Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
glued)
#if __GLASGOW_HASKELL__
{-# INLINABLE updateLookupWithKey #-}
#else
{-# INLINE updateLookupWithKey #-}
#endif
alter :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a
alter :: forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
alter = (Maybe a -> Maybe a) -> k -> Map k a -> Map k a
forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go
where
go :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go :: forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go Maybe a -> Maybe a
f !k
k Map k a
Tip = case Maybe a -> Maybe a
f Maybe a
forall a. Maybe a
Nothing of
Maybe a
Nothing -> Map k a
forall k a. Map k a
Tip
Just a
x -> k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
k a
x
go Maybe a -> Maybe a
f k
k (Bin Size
sx k
kx a
x Map k a
l Map k a
r) = case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balance k
kx a
x ((Maybe a -> Maybe a) -> k -> Map k a -> Map k a
forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go Maybe a -> Maybe a
f k
k Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balance k
kx a
x Map k a
l ((Maybe a -> Maybe a) -> k -> Map k a -> Map k a
forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go Maybe a -> Maybe a
f k
k Map k a
r)
Ordering
EQ -> case Maybe a -> Maybe a
f (a -> Maybe a
forall a. a -> Maybe a
Just a
x) of
Just a
x' -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
Maybe a
Nothing -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE alter #-}
#else
{-# INLINE alter #-}
#endif
data AreWeStrict = Strict | Lazy
alterF :: (Functor f, Ord k)
=> (Maybe a -> f (Maybe a)) -> k -> Map k a -> f (Map k a)
alterF :: forall (f :: * -> *) k a.
(Functor f, Ord k) =>
(Maybe a -> f (Maybe a)) -> k -> Map k a -> f (Map k a)
alterF Maybe a -> f (Maybe a)
f k
k Map k a
m = AreWeStrict
-> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
forall (f :: * -> *) k a.
(Functor f, Ord k) =>
AreWeStrict
-> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
atKeyImpl AreWeStrict
Lazy k
k Maybe a -> f (Maybe a)
f Map k a
m
#ifndef __GLASGOW_HASKELL__
{-# INLINE alterF #-}
#else
{-# INLINABLE [2] alterF #-}
{-# RULES
"alterF/Const" forall k (f :: Maybe a -> Const b (Maybe a)) . alterF f k = \m -> Const . getConst . f $ lookup k m
#-}
{-# RULES
"alterF/Identity" forall k f . alterF f k = atKeyIdentity k f
#-}
#endif
atKeyImpl :: (Functor f, Ord k) =>
AreWeStrict -> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
#ifdef DEFINE_ALTERF_FALLBACK
atKeyImpl strict !k f m
| wordSize < 61 && size m >= alterFCutoff = alterFFallback strict k f m
#endif
atKeyImpl :: forall (f :: * -> *) k a.
(Functor f, Ord k) =>
AreWeStrict
-> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
atKeyImpl AreWeStrict
strict !k
k Maybe a -> f (Maybe a)
f Map k a
m = case k -> Map k a -> TraceResult a
forall k a. Ord k => k -> Map k a -> TraceResult a
lookupTrace k
k Map k a
m of
TraceResult Maybe a
mv BitQueue
q -> ((Maybe a -> Map k a) -> f (Maybe a) -> f (Map k a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe a -> f (Maybe a)
f Maybe a
mv) ((Maybe a -> Map k a) -> f (Map k a))
-> (Maybe a -> Map k a) -> f (Map k a)
forall a b. (a -> b) -> a -> b
$ \ Maybe a
fres ->
case Maybe a
fres of
Maybe a
Nothing -> case Maybe a
mv of
Maybe a
Nothing -> Map k a
m
Just a
old -> a -> BitQueue -> Map k a -> Map k a
forall any k a. any -> BitQueue -> Map k a -> Map k a
deleteAlong a
old BitQueue
q Map k a
m
Just a
new -> case AreWeStrict
strict of
AreWeStrict
Strict -> a
new a -> Map k a -> Map k a
forall a b. a -> b -> b
`seq` case Maybe a
mv of
Maybe a
Nothing -> BitQueue -> k -> a -> Map k a -> Map k a
forall k a. BitQueue -> k -> a -> Map k a -> Map k a
insertAlong BitQueue
q k
k a
new Map k a
m
Just a
_ -> BitQueue -> a -> Map k a -> Map k a
forall a k. BitQueue -> a -> Map k a -> Map k a
replaceAlong BitQueue
q a
new Map k a
m
AreWeStrict
Lazy -> case Maybe a
mv of
Maybe a
Nothing -> BitQueue -> k -> a -> Map k a -> Map k a
forall k a. BitQueue -> k -> a -> Map k a -> Map k a
insertAlong BitQueue
q k
k a
new Map k a
m
Just a
_ -> BitQueue -> a -> Map k a -> Map k a
forall a k. BitQueue -> a -> Map k a -> Map k a
replaceAlong BitQueue
q a
new Map k a
m
{-# INLINE atKeyImpl #-}
#ifdef DEFINE_ALTERF_FALLBACK
alterFCutoff :: Int
#if WORD_SIZE_IN_BITS == 32
alterFCutoff = 55744454
#else
alterFCutoff = case wordSize of
30 -> 17637893
31 -> 31356255
32 -> 55744454
x -> (4^(x*2-2)) `quot` (3^(x*2-2))
#endif
#endif
data TraceResult a = TraceResult (Maybe a) {-# UNPACK #-} !BitQueue
lookupTrace :: Ord k => k -> Map k a -> TraceResult a
lookupTrace :: forall k a. Ord k => k -> Map k a -> TraceResult a
lookupTrace = BitQueueB -> k -> Map k a -> TraceResult a
forall k a. Ord k => BitQueueB -> k -> Map k a -> TraceResult a
go BitQueueB
emptyQB
where
go :: Ord k => BitQueueB -> k -> Map k a -> TraceResult a
go :: forall k a. Ord k => BitQueueB -> k -> Map k a -> TraceResult a
go !BitQueueB
q !k
_ Map k a
Tip = Maybe a -> BitQueue -> TraceResult a
forall a. Maybe a -> BitQueue -> TraceResult a
TraceResult Maybe a
forall a. Maybe a
Nothing (BitQueueB -> BitQueue
buildQ BitQueueB
q)
go BitQueueB
q k
k (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> (BitQueueB -> k -> Map k a -> TraceResult a
forall k a. Ord k => BitQueueB -> k -> Map k a -> TraceResult a
go (BitQueueB -> k -> Map k a -> TraceResult a)
-> BitQueueB -> k -> Map k a -> TraceResult a
forall a b. (a -> b) -> a -> b
$! BitQueueB
q BitQueueB -> Bool -> BitQueueB
`snocQB` Bool
False) k
k Map k a
l
Ordering
GT -> (BitQueueB -> k -> Map k a -> TraceResult a
forall k a. Ord k => BitQueueB -> k -> Map k a -> TraceResult a
go (BitQueueB -> k -> Map k a -> TraceResult a)
-> BitQueueB -> k -> Map k a -> TraceResult a
forall a b. (a -> b) -> a -> b
$! BitQueueB
q BitQueueB -> Bool -> BitQueueB
`snocQB` Bool
True) k
k Map k a
r
Ordering
EQ -> Maybe a -> BitQueue -> TraceResult a
forall a. Maybe a -> BitQueue -> TraceResult a
TraceResult (a -> Maybe a
forall a. a -> Maybe a
Just a
x) (BitQueueB -> BitQueue
buildQ BitQueueB
q)
#ifdef __GLASGOW_HASKELL__
{-# INLINABLE lookupTrace #-}
#else
{-# INLINE lookupTrace #-}
#endif
insertAlong :: BitQueue -> k -> a -> Map k a -> Map k a
insertAlong :: forall k a. BitQueue -> k -> a -> Map k a -> Map k a
insertAlong !BitQueue
_ k
kx a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
insertAlong BitQueue
q k
kx a
x (Bin Size
sz k
ky a
y Map k a
l Map k a
r) =
case BitQueue -> Maybe (Bool, BitQueue)
unconsQ BitQueue
q of
Just (Bool
False, BitQueue
tl) -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y (BitQueue -> k -> a -> Map k a -> Map k a
forall k a. BitQueue -> k -> a -> Map k a -> Map k a
insertAlong BitQueue
tl k
kx a
x Map k a
l) Map k a
r
Just (Bool
True,BitQueue
tl) -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l (BitQueue -> k -> a -> Map k a -> Map k a
forall k a. BitQueue -> k -> a -> Map k a -> Map k a
insertAlong BitQueue
tl k
kx a
x Map k a
r)
Maybe (Bool, BitQueue)
Nothing -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
kx a
x Map k a
l Map k a
r
deleteAlong :: any -> BitQueue -> Map k a -> Map k a
deleteAlong :: forall any k a. any -> BitQueue -> Map k a -> Map k a
deleteAlong any
old !BitQueue
q0 !Map k a
m = Proxy# () -> BitQueue -> Map k a -> Map k a
forall k a. Proxy# () -> BitQueue -> Map k a -> Map k a
go (any -> Proxy# ()
forall a. a -> Proxy# ()
bogus any
old) BitQueue
q0 Map k a
m where
#ifdef USE_MAGIC_PROXY
go :: Proxy# () -> BitQueue -> Map k a -> Map k a
#else
go :: any -> BitQueue -> Map k a -> Map k a
#endif
go :: forall k a. Proxy# () -> BitQueue -> Map k a -> Map k a
go !Proxy# ()
_ !BitQueue
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
go Proxy# ()
foom BitQueue
q (Bin Size
_ k
ky a
y Map k a
l Map k a
r) =
case BitQueue -> Maybe (Bool, BitQueue)
unconsQ BitQueue
q of
Just (Bool
False, BitQueue
tl) -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y (Proxy# () -> BitQueue -> Map k a -> Map k a
forall k a. Proxy# () -> BitQueue -> Map k a -> Map k a
go Proxy# ()
foom BitQueue
tl Map k a
l) Map k a
r
Just (Bool
True, BitQueue
tl) -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y Map k a
l (Proxy# () -> BitQueue -> Map k a -> Map k a
forall k a. Proxy# () -> BitQueue -> Map k a -> Map k a
go Proxy# ()
foom BitQueue
tl Map k a
r)
Maybe (Bool, BitQueue)
Nothing -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
#ifdef USE_MAGIC_PROXY
{-# NOINLINE bogus #-}
bogus :: a -> Proxy# ()
bogus :: forall a. a -> Proxy# ()
bogus a
_ = Proxy# ()
forall {k} (a :: k). Proxy# a
proxy#
#else
{-# INLINE bogus #-}
bogus :: a -> a
bogus a = a
#endif
replaceAlong :: BitQueue -> a -> Map k a -> Map k a
replaceAlong :: forall a k. BitQueue -> a -> Map k a -> Map k a
replaceAlong !BitQueue
_ a
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
replaceAlong BitQueue
q a
x (Bin Size
sz k
ky a
y Map k a
l Map k a
r) =
case BitQueue -> Maybe (Bool, BitQueue)
unconsQ BitQueue
q of
Just (Bool
False, BitQueue
tl) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
ky a
y (BitQueue -> a -> Map k a -> Map k a
forall a k. BitQueue -> a -> Map k a -> Map k a
replaceAlong BitQueue
tl a
x Map k a
l) Map k a
r
Just (Bool
True,BitQueue
tl) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
ky a
y Map k a
l (BitQueue -> a -> Map k a -> Map k a
forall a k. BitQueue -> a -> Map k a -> Map k a
replaceAlong BitQueue
tl a
x Map k a
r)
Maybe (Bool, BitQueue)
Nothing -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
ky a
x Map k a
l Map k a
r
#ifdef __GLASGOW_HASKELL__
atKeyIdentity :: Ord k => k -> (Maybe a -> Identity (Maybe a)) -> Map k a -> Identity (Map k a)
atKeyIdentity :: forall k a.
Ord k =>
k
-> (Maybe a -> Identity (Maybe a)) -> Map k a -> Identity (Map k a)
atKeyIdentity k
k Maybe a -> Identity (Maybe a)
f Map k a
t = Map k a -> Identity (Map k a)
forall a. a -> Identity a
Identity (Map k a -> Identity (Map k a)) -> Map k a -> Identity (Map k a)
forall a b. (a -> b) -> a -> b
$ AreWeStrict -> k -> (Maybe a -> Maybe a) -> Map k a -> Map k a
forall k a.
Ord k =>
AreWeStrict -> k -> (Maybe a -> Maybe a) -> Map k a -> Map k a
atKeyPlain AreWeStrict
Lazy k
k ((Maybe a -> Identity (Maybe a)) -> Maybe a -> Maybe a
forall a b. Coercible a b => a -> b
coerce Maybe a -> Identity (Maybe a)
f) Map k a
t
{-# INLINABLE atKeyIdentity #-}
atKeyPlain :: Ord k => AreWeStrict -> k -> (Maybe a -> Maybe a) -> Map k a -> Map k a
atKeyPlain :: forall k a.
Ord k =>
AreWeStrict -> k -> (Maybe a -> Maybe a) -> Map k a -> Map k a
atKeyPlain AreWeStrict
strict k
k0 Maybe a -> Maybe a
f0 Map k a
t = case k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
forall k a.
Ord k =>
k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
go k
k0 Maybe a -> Maybe a
f0 Map k a
t of
AltSmaller Map k a
t' -> Map k a
t'
AltBigger Map k a
t' -> Map k a
t'
AltAdj Map k a
t' -> Map k a
t'
Altered k a
AltSame -> Map k a
t
where
go :: Ord k => k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
go :: forall k a.
Ord k =>
k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
go !k
k Maybe a -> Maybe a
f Map k a
Tip = case Maybe a -> Maybe a
f Maybe a
forall a. Maybe a
Nothing of
Maybe a
Nothing -> Altered k a
forall k a. Altered k a
AltSame
Just a
x -> case AreWeStrict
strict of
AreWeStrict
Lazy -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltBigger (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
k a
x
AreWeStrict
Strict -> a
x a -> Altered k a -> Altered k a
forall a b. a -> b -> b
`seq` (Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltBigger (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
k a
x)
go k
k Maybe a -> Maybe a
f (Bin Size
sx k
kx a
x Map k a
l Map k a
r) = case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> case k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
forall k a.
Ord k =>
k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
go k
k Maybe a -> Maybe a
f Map k a
l of
AltSmaller Map k a
l' -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltSmaller (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
l' Map k a
r
AltBigger Map k a
l' -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltBigger (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l' Map k a
r
AltAdj Map k a
l' -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltAdj (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x Map k a
l' Map k a
r
Altered k a
AltSame -> Altered k a
forall k a. Altered k a
AltSame
Ordering
GT -> case k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
forall k a.
Ord k =>
k -> (Maybe a -> Maybe a) -> Map k a -> Altered k a
go k
k Maybe a -> Maybe a
f Map k a
r of
AltSmaller Map k a
r' -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltSmaller (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l Map k a
r'
AltBigger Map k a
r' -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltBigger (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
l Map k a
r'
AltAdj Map k a
r' -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltAdj (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x Map k a
l Map k a
r'
Altered k a
AltSame -> Altered k a
forall k a. Altered k a
AltSame
Ordering
EQ -> case Maybe a -> Maybe a
f (a -> Maybe a
forall a. a -> Maybe a
Just a
x) of
Just a
x' -> case AreWeStrict
strict of
AreWeStrict
Lazy -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltAdj (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
AreWeStrict
Strict -> a
x' a -> Altered k a -> Altered k a
forall a b. a -> b -> b
`seq` (Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltAdj (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r)
Maybe a
Nothing -> Map k a -> Altered k a
forall k a. Map k a -> Altered k a
AltSmaller (Map k a -> Altered k a) -> Map k a -> Altered k a
forall a b. (a -> b) -> a -> b
$ Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
{-# INLINE atKeyPlain #-}
data Altered k a = AltSmaller !(Map k a) | AltBigger !(Map k a) | AltAdj !(Map k a) | AltSame
#endif
#ifdef DEFINE_ALTERF_FALLBACK
alterFFallback :: (Functor f, Ord k)
=> AreWeStrict -> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
alterFFallback Lazy k f t = alterFYoneda k (\m q -> q <$> f m) t id
alterFFallback Strict k f t = alterFYoneda k (\m q -> q . forceMaybe <$> f m) t id
where
forceMaybe Nothing = Nothing
forceMaybe may@(Just !_) = may
{-# NOINLINE alterFFallback #-}
alterFYoneda :: Ord k =>
k -> (Maybe a -> (Maybe a -> b) -> f b) -> Map k a -> (Map k a -> b) -> f b
alterFYoneda = go
where
go :: Ord k =>
k -> (Maybe a -> (Maybe a -> b) -> f b) -> Map k a -> (Map k a -> b) -> f b
go !k f Tip g = f Nothing $ \ mx -> case mx of
Nothing -> g Tip
Just x -> g (singleton k x)
go k f (Bin sx kx x l r) g = case compare k kx of
LT -> go k f l (\m -> g (balance kx x m r))
GT -> go k f r (\m -> g (balance kx x l m))
EQ -> f (Just x) $ \ mx' -> case mx' of
Just x' -> g (Bin sx kx x' l r)
Nothing -> g (glue l r)
{-# INLINE alterFYoneda #-}
#endif
findIndex :: Ord k => k -> Map k a -> Int
findIndex :: forall k a. Ord k => k -> Map k a -> Size
findIndex = Size -> k -> Map k a -> Size
forall k a. Ord k => Size -> k -> Map k a -> Size
go Size
0
where
go :: Ord k => Int -> k -> Map k a -> Int
go :: forall k a. Ord k => Size -> k -> Map k a -> Size
go !Size
_ !k
_ Map k a
Tip = [Char] -> Size
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.findIndex: element is not in the map"
go Size
idx k
k (Bin Size
_ k
kx a
_ Map k a
l Map k a
r) = case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> Size -> k -> Map k a -> Size
forall k a. Ord k => Size -> k -> Map k a -> Size
go Size
idx k
k Map k a
l
Ordering
GT -> Size -> k -> Map k a -> Size
forall k a. Ord k => Size -> k -> Map k a -> Size
go (Size
idx Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Size
1) k
k Map k a
r
Ordering
EQ -> Size
idx Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l
#if __GLASGOW_HASKELL__
{-# INLINABLE findIndex #-}
#endif
lookupIndex :: Ord k => k -> Map k a -> Maybe Int
lookupIndex :: forall k a. Ord k => k -> Map k a -> Maybe Size
lookupIndex = Size -> k -> Map k a -> Maybe Size
forall k a. Ord k => Size -> k -> Map k a -> Maybe Size
go Size
0
where
go :: Ord k => Int -> k -> Map k a -> Maybe Int
go :: forall k a. Ord k => Size -> k -> Map k a -> Maybe Size
go !Size
_ !k
_ Map k a
Tip = Maybe Size
forall a. Maybe a
Nothing
go Size
idx k
k (Bin Size
_ k
kx a
_ Map k a
l Map k a
r) = case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> Size -> k -> Map k a -> Maybe Size
forall k a. Ord k => Size -> k -> Map k a -> Maybe Size
go Size
idx k
k Map k a
l
Ordering
GT -> Size -> k -> Map k a -> Maybe Size
forall k a. Ord k => Size -> k -> Map k a -> Maybe Size
go (Size
idx Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Size
1) k
k Map k a
r
Ordering
EQ -> Size -> Maybe Size
forall a. a -> Maybe a
Just (Size -> Maybe Size) -> Size -> Maybe Size
forall a b. (a -> b) -> a -> b
$! Size
idx Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupIndex #-}
#endif
elemAt :: Int -> Map k a -> (k,a)
elemAt :: forall k a. Size -> Map k a -> (k, a)
elemAt !Size
_ Map k a
Tip = [Char] -> (k, a)
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.elemAt: index out of range"
elemAt Size
i (Bin Size
_ k
kx a
x Map k a
l Map k a
r)
= case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
Ordering
LT -> Size -> Map k a -> (k, a)
forall k a. Size -> Map k a -> (k, a)
elemAt Size
i Map k a
l
Ordering
GT -> Size -> Map k a -> (k, a)
forall k a. Size -> Map k a -> (k, a)
elemAt (Size
iSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
sizeLSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
1) Map k a
r
Ordering
EQ -> (k
kx,a
x)
where
sizeL :: Size
sizeL = Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l
take :: Int -> Map k a -> Map k a
take :: forall k a. Size -> Map k a -> Map k a
take Size
i Map k a
m | Size
i Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
>= Map k a -> Size
forall k a. Map k a -> Size
size Map k a
m = Map k a
m
take Size
i0 Map k a
m0 = Size -> Map k a -> Map k a
forall k a. Size -> Map k a -> Map k a
go Size
i0 Map k a
m0
where
go :: Size -> Map k a -> Map k a
go Size
i !Map k a
_ | Size
i Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Size
0 = Map k a
forall k a. Map k a
Tip
go !Size
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
go Size
i (Bin Size
_ k
kx a
x Map k a
l Map k a
r) =
case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
Ordering
LT -> Size -> Map k a -> Map k a
go Size
i Map k a
l
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l (Size -> Map k a -> Map k a
go (Size
i Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
sizeL Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
1) Map k a
r)
Ordering
EQ -> Map k a
l
where sizeL :: Size
sizeL = Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l
drop :: Int -> Map k a -> Map k a
drop :: forall k a. Size -> Map k a -> Map k a
drop Size
i Map k a
m | Size
i Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
>= Map k a -> Size
forall k a. Map k a -> Size
size Map k a
m = Map k a
forall k a. Map k a
Tip
drop Size
i0 Map k a
m0 = Size -> Map k a -> Map k a
forall k a. Size -> Map k a -> Map k a
go Size
i0 Map k a
m0
where
go :: Size -> Map k a -> Map k a
go Size
i Map k a
m | Size
i Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Size
0 = Map k a
m
go !Size
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
go Size
i (Bin Size
_ k
kx a
x Map k a
l Map k a
r) =
case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x (Size -> Map k a -> Map k a
go Size
i Map k a
l) Map k a
r
Ordering
GT -> Size -> Map k a -> Map k a
go (Size
i Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
sizeL Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
1) Map k a
r
Ordering
EQ -> k -> a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a
insertMin k
kx a
x Map k a
r
where sizeL :: Size
sizeL = Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l
splitAt :: Int -> Map k a -> (Map k a, Map k a)
splitAt :: forall k a. Size -> Map k a -> (Map k a, Map k a)
splitAt Size
i0 Map k a
m0
| Size
i0 Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
>= Map k a -> Size
forall k a. Map k a -> Size
size Map k a
m0 = (Map k a
m0, Map k a
forall k a. Map k a
Tip)
| Bool
otherwise = StrictPair (Map k a) (Map k a) -> (Map k a, Map k a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (Map k a) (Map k a) -> (Map k a, Map k a))
-> StrictPair (Map k a) (Map k a) -> (Map k a, Map k a)
forall a b. (a -> b) -> a -> b
$ Size -> Map k a -> StrictPair (Map k a) (Map k a)
forall {k} {a}. Size -> Map k a -> StrictPair (Map k a) (Map k a)
go Size
i0 Map k a
m0
where
go :: Size -> Map k a -> StrictPair (Map k a) (Map k a)
go Size
i Map k a
m | Size
i Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Size
0 = Map k a
forall k a. Map k a
Tip Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
m
go !Size
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
forall k a. Map k a
Tip
go Size
i (Bin Size
_ k
kx a
x Map k a
l Map k a
r)
= case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
Ordering
LT -> case Size -> Map k a -> StrictPair (Map k a) (Map k a)
go Size
i Map k a
l of
Map k a
ll :*: Map k a
lr -> Map k a
ll Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
lr Map k a
r
Ordering
GT -> case Size -> Map k a -> StrictPair (Map k a) (Map k a)
go (Size
i Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
sizeL Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
1) Map k a
r of
Map k a
rl :*: Map k a
rr -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
rl Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
rr
Ordering
EQ -> Map k a
l Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: k -> a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a
insertMin k
kx a
x Map k a
r
where sizeL :: Size
sizeL = Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l
updateAt :: (k -> a -> Maybe a) -> Int -> Map k a -> Map k a
updateAt :: forall k a. (k -> a -> Maybe a) -> Size -> Map k a -> Map k a
updateAt k -> a -> Maybe a
f !Size
i Map k a
t =
case Map k a
t of
Map k a
Tip -> [Char] -> Map k a
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.updateAt: index out of range"
Bin Size
sx k
kx a
x Map k a
l Map k a
r -> case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x ((k -> a -> Maybe a) -> Size -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Size -> Map k a -> Map k a
updateAt k -> a -> Maybe a
f Size
i Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l ((k -> a -> Maybe a) -> Size -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Size -> Map k a -> Map k a
updateAt k -> a -> Maybe a
f (Size
iSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
sizeLSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
1) Map k a
r)
Ordering
EQ -> case k -> a -> Maybe a
f k
kx a
x of
Just a
x' -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
Maybe a
Nothing -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
where
sizeL :: Size
sizeL = Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l
deleteAt :: Int -> Map k a -> Map k a
deleteAt :: forall k a. Size -> Map k a -> Map k a
deleteAt !Size
i Map k a
t =
case Map k a
t of
Map k a
Tip -> [Char] -> Map k a
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.deleteAt: index out of range"
Bin Size
_ k
kx a
x Map k a
l Map k a
r -> case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x (Size -> Map k a -> Map k a
forall k a. Size -> Map k a -> Map k a
deleteAt Size
i Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l (Size -> Map k a -> Map k a
forall k a. Size -> Map k a -> Map k a
deleteAt (Size
iSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
sizeLSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
1) Map k a
r)
Ordering
EQ -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
where
sizeL :: Size
sizeL = Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l
lookupMinSure :: k -> a -> Map k a -> (k, a)
lookupMinSure :: forall k a. k -> a -> Map k a -> (k, a)
lookupMinSure k
k a
a Map k a
Tip = (k
k, a
a)
lookupMinSure k
_ a
_ (Bin Size
_ k
k a
a Map k a
l Map k a
_) = k -> a -> Map k a -> (k, a)
forall k a. k -> a -> Map k a -> (k, a)
lookupMinSure k
k a
a Map k a
l
lookupMin :: Map k a -> Maybe (k,a)
lookupMin :: forall k a. Map k a -> Maybe (k, a)
lookupMin Map k a
Tip = Maybe (k, a)
forall a. Maybe a
Nothing
lookupMin (Bin Size
_ k
k a
x Map k a
l Map k a
_) = (k, a) -> Maybe (k, a)
forall a. a -> Maybe a
Just ((k, a) -> Maybe (k, a)) -> (k, a) -> Maybe (k, a)
forall a b. (a -> b) -> a -> b
$! k -> a -> Map k a -> (k, a)
forall k a. k -> a -> Map k a -> (k, a)
lookupMinSure k
k a
x Map k a
l
findMin :: Map k a -> (k,a)
findMin :: forall k a. Map k a -> (k, a)
findMin Map k a
t
| Just (k, a)
r <- Map k a -> Maybe (k, a)
forall k a. Map k a -> Maybe (k, a)
lookupMin Map k a
t = (k, a)
r
| Bool
otherwise = [Char] -> (k, a)
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.findMin: empty map has no minimal element"
lookupMaxSure :: k -> a -> Map k a -> (k, a)
lookupMaxSure :: forall k a. k -> a -> Map k a -> (k, a)
lookupMaxSure k
k a
a Map k a
Tip = (k
k, a
a)
lookupMaxSure k
_ a
_ (Bin Size
_ k
k a
a Map k a
_ Map k a
r) = k -> a -> Map k a -> (k, a)
forall k a. k -> a -> Map k a -> (k, a)
lookupMaxSure k
k a
a Map k a
r
lookupMax :: Map k a -> Maybe (k, a)
lookupMax :: forall k a. Map k a -> Maybe (k, a)
lookupMax Map k a
Tip = Maybe (k, a)
forall a. Maybe a
Nothing
lookupMax (Bin Size
_ k
k a
x Map k a
_ Map k a
r) = (k, a) -> Maybe (k, a)
forall a. a -> Maybe a
Just ((k, a) -> Maybe (k, a)) -> (k, a) -> Maybe (k, a)
forall a b. (a -> b) -> a -> b
$! k -> a -> Map k a -> (k, a)
forall k a. k -> a -> Map k a -> (k, a)
lookupMaxSure k
k a
x Map k a
r
findMax :: Map k a -> (k,a)
findMax :: forall k a. Map k a -> (k, a)
findMax Map k a
t
| Just (k, a)
r <- Map k a -> Maybe (k, a)
forall k a. Map k a -> Maybe (k, a)
lookupMax Map k a
t = (k, a)
r
| Bool
otherwise = [Char] -> (k, a)
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.findMax: empty map has no maximal element"
deleteMin :: Map k a -> Map k a
deleteMin :: forall k a. Map k a -> Map k a
deleteMin (Bin Size
_ k
_ a
_ Map k a
Tip Map k a
r) = Map k a
r
deleteMin (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x (Map k a -> Map k a
forall k a. Map k a -> Map k a
deleteMin Map k a
l) Map k a
r
deleteMin Map k a
Tip = Map k a
forall k a. Map k a
Tip
deleteMax :: Map k a -> Map k a
deleteMax :: forall k a. Map k a -> Map k a
deleteMax (Bin Size
_ k
_ a
_ Map k a
l Map k a
Tip) = Map k a
l
deleteMax (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l (Map k a -> Map k a
forall k a. Map k a -> Map k a
deleteMax Map k a
r)
deleteMax Map k a
Tip = Map k a
forall k a. Map k a
Tip
updateMin :: (a -> Maybe a) -> Map k a -> Map k a
updateMin :: forall a k. (a -> Maybe a) -> Map k a -> Map k a
updateMin a -> Maybe a
f Map k a
m
= (k -> a -> Maybe a) -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey (\k
_ a
x -> a -> Maybe a
f a
x) Map k a
m
updateMax :: (a -> Maybe a) -> Map k a -> Map k a
updateMax :: forall a k. (a -> Maybe a) -> Map k a -> Map k a
updateMax a -> Maybe a
f Map k a
m
= (k -> a -> Maybe a) -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey (\k
_ a
x -> a -> Maybe a
f a
x) Map k a
m
updateMinWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey :: forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey k -> a -> Maybe a
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
updateMinWithKey k -> a -> Maybe a
f (Bin Size
sx k
kx a
x Map k a
Tip Map k a
r) = case k -> a -> Maybe a
f k
kx a
x of
Maybe a
Nothing -> Map k a
r
Just a
x' -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
forall k a. Map k a
Tip Map k a
r
updateMinWithKey k -> a -> Maybe a
f (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x ((k -> a -> Maybe a) -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey k -> a -> Maybe a
f Map k a
l) Map k a
r
updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey :: forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey k -> a -> Maybe a
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
updateMaxWithKey k -> a -> Maybe a
f (Bin Size
sx k
kx a
x Map k a
l Map k a
Tip) = case k -> a -> Maybe a
f k
kx a
x of
Maybe a
Nothing -> Map k a
l
Just a
x' -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
forall k a. Map k a
Tip
updateMaxWithKey k -> a -> Maybe a
f (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l ((k -> a -> Maybe a) -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey k -> a -> Maybe a
f Map k a
r)
minViewWithKey :: Map k a -> Maybe ((k,a), Map k a)
minViewWithKey :: forall k a. Map k a -> Maybe ((k, a), Map k a)
minViewWithKey Map k a
Tip = Maybe ((k, a), Map k a)
forall a. Maybe a
Nothing
minViewWithKey (Bin Size
_ k
k a
x Map k a
l Map k a
r) = ((k, a), Map k a) -> Maybe ((k, a), Map k a)
forall a. a -> Maybe a
Just (((k, a), Map k a) -> Maybe ((k, a), Map k a))
-> ((k, a), Map k a) -> Maybe ((k, a), Map k a)
forall a b. (a -> b) -> a -> b
$
case k -> a -> Map k a -> Map k a -> MinView k a
forall k a. k -> a -> Map k a -> Map k a -> MinView k a
minViewSure k
k a
x Map k a
l Map k a
r of
MinView k
km a
xm Map k a
t -> ((k
km, a
xm), Map k a
t)
{-# INLINE minViewWithKey #-}
maxViewWithKey :: Map k a -> Maybe ((k,a), Map k a)
maxViewWithKey :: forall k a. Map k a -> Maybe ((k, a), Map k a)
maxViewWithKey Map k a
Tip = Maybe ((k, a), Map k a)
forall a. Maybe a
Nothing
maxViewWithKey (Bin Size
_ k
k a
x Map k a
l Map k a
r) = ((k, a), Map k a) -> Maybe ((k, a), Map k a)
forall a. a -> Maybe a
Just (((k, a), Map k a) -> Maybe ((k, a), Map k a))
-> ((k, a), Map k a) -> Maybe ((k, a), Map k a)
forall a b. (a -> b) -> a -> b
$
case k -> a -> Map k a -> Map k a -> MaxView k a
forall k a. k -> a -> Map k a -> Map k a -> MaxView k a
maxViewSure k
k a
x Map k a
l Map k a
r of
MaxView k
km a
xm Map k a
t -> ((k
km, a
xm), Map k a
t)
{-# INLINE maxViewWithKey #-}
minView :: Map k a -> Maybe (a, Map k a)
minView :: forall k a. Map k a -> Maybe (a, Map k a)
minView Map k a
t = case Map k a -> Maybe ((k, a), Map k a)
forall k a. Map k a -> Maybe ((k, a), Map k a)
minViewWithKey Map k a
t of
Maybe ((k, a), Map k a)
Nothing -> Maybe (a, Map k a)
forall a. Maybe a
Nothing
Just ~((k
_, a
x), Map k a
t') -> (a, Map k a) -> Maybe (a, Map k a)
forall a. a -> Maybe a
Just (a
x, Map k a
t')
maxView :: Map k a -> Maybe (a, Map k a)
maxView :: forall k a. Map k a -> Maybe (a, Map k a)
maxView Map k a
t = case Map k a -> Maybe ((k, a), Map k a)
forall k a. Map k a -> Maybe ((k, a), Map k a)
maxViewWithKey Map k a
t of
Maybe ((k, a), Map k a)
Nothing -> Maybe (a, Map k a)
forall a. Maybe a
Nothing
Just ~((k
_, a
x), Map k a
t') -> (a, Map k a) -> Maybe (a, Map k a)
forall a. a -> Maybe a
Just (a
x, Map k a
t')
unions :: (Foldable f, Ord k) => f (Map k a) -> Map k a
unions :: forall (f :: * -> *) k a.
(Foldable f, Ord k) =>
f (Map k a) -> Map k a
unions f (Map k a)
ts
= (Map k a -> Map k a -> Map k a)
-> Map k a -> f (Map k a) -> Map k a
forall b a. (b -> a -> b) -> b -> f a -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' Map k a -> Map k a -> Map k a
forall k v. Ord k => Map k v -> Map k v -> Map k v
union Map k a
forall k a. Map k a
empty f (Map k a)
ts
#if __GLASGOW_HASKELL__
{-# INLINABLE unions #-}
#endif
unionsWith :: (Foldable f, Ord k) => (a->a->a) -> f (Map k a) -> Map k a
unionsWith :: forall (f :: * -> *) k a.
(Foldable f, Ord k) =>
(a -> a -> a) -> f (Map k a) -> Map k a
unionsWith a -> a -> a
f f (Map k a)
ts
= (Map k a -> Map k a -> Map k a)
-> Map k a -> f (Map k a) -> Map k a
forall b a. (b -> a -> b) -> b -> f a -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' ((a -> a -> a) -> Map k a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
f) Map k a
forall k a. Map k a
empty f (Map k a)
ts
#if __GLASGOW_HASKELL__
{-# INLINABLE unionsWith #-}
#endif
union :: Ord k => Map k a -> Map k a -> Map k a
union :: forall k v. Ord k => Map k v -> Map k v -> Map k v
union Map k a
t1 Map k a
Tip = Map k a
t1
union Map k a
t1 (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) = k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> a -> Map k a -> Map k a
insertR k
k a
x Map k a
t1
union (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) Map k a
t2 = k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> a -> Map k a -> Map k a
insert k
k a
x Map k a
t2
union Map k a
Tip Map k a
t2 = Map k a
t2
union t1 :: Map k a
t1@(Bin Size
_ k
k1 a
x1 Map k a
l1 Map k a
r1) Map k a
t2 = case k -> Map k a -> (Map k a, Map k a)
forall k a. Ord k => k -> Map k a -> (Map k a, Map k a)
split k
k1 Map k a
t2 of
(Map k a
l2, Map k a
r2) | Map k a
l1l2 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l1 Bool -> Bool -> Bool
&& Map k a
r1r2 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r1 -> Map k a
t1
| Bool
otherwise -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 a
x1 Map k a
l1l2 Map k a
r1r2
where !l1l2 :: Map k a
l1l2 = Map k a -> Map k a -> Map k a
forall k v. Ord k => Map k v -> Map k v -> Map k v
union Map k a
l1 Map k a
l2
!r1r2 :: Map k a
r1r2 = Map k a -> Map k a -> Map k a
forall k v. Ord k => Map k v -> Map k v -> Map k v
union Map k a
r1 Map k a
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE union #-}
#endif
unionWith :: Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith :: forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
_f Map k a
t1 Map k a
Tip = Map k a
t1
unionWith a -> a -> a
f Map k a
t1 (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) = (a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithR a -> a -> a
f k
k a
x Map k a
t1
unionWith a -> a -> a
f (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) Map k a
t2 = (a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWith a -> a -> a
f k
k a
x Map k a
t2
unionWith a -> a -> a
_f Map k a
Tip Map k a
t2 = Map k a
t2
unionWith a -> a -> a
f (Bin Size
_ k
k1 a
x1 Map k a
l1 Map k a
r1) Map k a
t2 = case k -> Map k a -> (Map k a, Maybe a, Map k a)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k1 Map k a
t2 of
(Map k a
l2, Maybe a
mb, Map k a
r2) -> case Maybe a
mb of
Maybe a
Nothing -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 a
x1 Map k a
l1l2 Map k a
r1r2
Just a
x2 -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 (a -> a -> a
f a
x1 a
x2) Map k a
l1l2 Map k a
r1r2
where !l1l2 :: Map k a
l1l2 = (a -> a -> a) -> Map k a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
f Map k a
l1 Map k a
l2
!r1r2 :: Map k a
r1r2 = (a -> a -> a) -> Map k a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
f Map k a
r1 Map k a
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE unionWith #-}
#endif
unionWithKey :: Ord k => (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey :: forall k a.
Ord k =>
(k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey k -> a -> a -> a
_f Map k a
t1 Map k a
Tip = Map k a
t1
unionWithKey k -> a -> a -> a
f Map k a
t1 (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) = (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKeyR k -> a -> a -> a
f k
k a
x Map k a
t1
unionWithKey k -> a -> a -> a
f (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) Map k a
t2 = (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey k -> a -> a -> a
f k
k a
x Map k a
t2
unionWithKey k -> a -> a -> a
_f Map k a
Tip Map k a
t2 = Map k a
t2
unionWithKey k -> a -> a -> a
f (Bin Size
_ k
k1 a
x1 Map k a
l1 Map k a
r1) Map k a
t2 = case k -> Map k a -> (Map k a, Maybe a, Map k a)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k1 Map k a
t2 of
(Map k a
l2, Maybe a
mb, Map k a
r2) -> case Maybe a
mb of
Maybe a
Nothing -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 a
x1 Map k a
l1l2 Map k a
r1r2
Just a
x2 -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 (k -> a -> a -> a
f k
k1 a
x1 a
x2) Map k a
l1l2 Map k a
r1r2
where !l1l2 :: Map k a
l1l2 = (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey k -> a -> a -> a
f Map k a
l1 Map k a
l2
!r1r2 :: Map k a
r1r2 = (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey k -> a -> a -> a
f Map k a
r1 Map k a
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE unionWithKey #-}
#endif
difference :: Ord k => Map k a -> Map k b -> Map k a
difference :: forall k a b. Ord k => Map k a -> Map k b -> Map k a
difference Map k a
Tip Map k b
_ = Map k a
forall k a. Map k a
Tip
difference Map k a
t1 Map k b
Tip = Map k a
t1
difference Map k a
t1 (Bin Size
_ k
k b
_ Map k b
l2 Map k b
r2) = case k -> Map k a -> (Map k a, Map k a)
forall k a. Ord k => k -> Map k a -> (Map k a, Map k a)
split k
k Map k a
t1 of
(Map k a
l1, Map k a
r1)
| Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l1l2 Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Map k a -> Size
forall k a. Map k a -> Size
size Map k a
r1r2 Size -> Size -> Bool
forall a. Eq a => a -> a -> Bool
== Map k a -> Size
forall k a. Map k a -> Size
size Map k a
t1 -> Map k a
t1
| Bool
otherwise -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l1l2 Map k a
r1r2
where
!l1l2 :: Map k a
l1l2 = Map k a -> Map k b -> Map k a
forall k a b. Ord k => Map k a -> Map k b -> Map k a
difference Map k a
l1 Map k b
l2
!r1r2 :: Map k a
r1r2 = Map k a -> Map k b -> Map k a
forall k a b. Ord k => Map k a -> Map k b -> Map k a
difference Map k a
r1 Map k b
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE difference #-}
#endif
withoutKeys :: Ord k => Map k a -> Set k -> Map k a
withoutKeys :: forall k a. Ord k => Map k a -> Set k -> Map k a
withoutKeys Map k a
Tip Set k
_ = Map k a
forall k a. Map k a
Tip
withoutKeys Map k a
m Set k
Set.Tip = Map k a
m
withoutKeys Map k a
m (Set.Bin Size
_ k
k Set k
ls Set k
rs) = case k -> Map k a -> (Map k a, Bool, Map k a)
forall k a. Ord k => k -> Map k a -> (Map k a, Bool, Map k a)
splitMember k
k Map k a
m of
(Map k a
lm, Bool
b, Map k a
rm)
| Bool -> Bool
not Bool
b Bool -> Bool -> Bool
&& Map k a
lm' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
lm Bool -> Bool -> Bool
&& Map k a
rm' Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
rm -> Map k a
m
| Bool
otherwise -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
lm' Map k a
rm'
where
!lm' :: Map k a
lm' = Map k a -> Set k -> Map k a
forall k a. Ord k => Map k a -> Set k -> Map k a
withoutKeys Map k a
lm Set k
ls
!rm' :: Map k a
rm' = Map k a -> Set k -> Map k a
forall k a. Ord k => Map k a -> Set k -> Map k a
withoutKeys Map k a
rm Set k
rs
#if __GLASGOW_HASKELL__
{-# INLINABLE withoutKeys #-}
#endif
differenceWith :: Ord k => (a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWith :: forall k a b.
Ord k =>
(a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWith a -> b -> Maybe a
f = SimpleWhenMissing k a a
-> SimpleWhenMissing k b a
-> SimpleWhenMatched k a b a
-> Map k a
-> Map k b
-> Map k a
forall k a c b.
Ord k =>
SimpleWhenMissing k a c
-> SimpleWhenMissing k b c
-> SimpleWhenMatched k a b c
-> Map k a
-> Map k b
-> Map k c
merge SimpleWhenMissing k a a
forall (f :: * -> *) k x. Applicative f => WhenMissing f k x x
preserveMissing SimpleWhenMissing k b a
forall (f :: * -> *) k x y. Applicative f => WhenMissing f k x y
dropMissing (SimpleWhenMatched k a b a -> Map k a -> Map k b -> Map k a)
-> SimpleWhenMatched k a b a -> Map k a -> Map k b -> Map k a
forall a b. (a -> b) -> a -> b
$
(k -> a -> b -> Maybe a) -> SimpleWhenMatched k a b a
forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> Maybe z) -> WhenMatched f k x y z
zipWithMaybeMatched (\k
_ a
x b
y -> a -> b -> Maybe a
f a
x b
y)
#if __GLASGOW_HASKELL__
{-# INLINABLE differenceWith #-}
#endif
differenceWithKey :: Ord k => (k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWithKey :: forall k a b.
Ord k =>
(k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWithKey k -> a -> b -> Maybe a
f =
SimpleWhenMissing k a a
-> SimpleWhenMissing k b a
-> SimpleWhenMatched k a b a
-> Map k a
-> Map k b
-> Map k a
forall k a c b.
Ord k =>
SimpleWhenMissing k a c
-> SimpleWhenMissing k b c
-> SimpleWhenMatched k a b c
-> Map k a
-> Map k b
-> Map k c
merge SimpleWhenMissing k a a
forall (f :: * -> *) k x. Applicative f => WhenMissing f k x x
preserveMissing SimpleWhenMissing k b a
forall (f :: * -> *) k x y. Applicative f => WhenMissing f k x y
dropMissing ((k -> a -> b -> Maybe a) -> SimpleWhenMatched k a b a
forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> Maybe z) -> WhenMatched f k x y z
zipWithMaybeMatched k -> a -> b -> Maybe a
f)
#if __GLASGOW_HASKELL__
{-# INLINABLE differenceWithKey #-}
#endif
intersection :: Ord k => Map k a -> Map k b -> Map k a
intersection :: forall k a b. Ord k => Map k a -> Map k b -> Map k a
intersection Map k a
Tip Map k b
_ = Map k a
forall k a. Map k a
Tip
intersection Map k a
_ Map k b
Tip = Map k a
forall k a. Map k a
Tip
intersection t1 :: Map k a
t1@(Bin Size
_ k
k a
x Map k a
l1 Map k a
r1) Map k b
t2
| Bool
mb = if Map k a
l1l2 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l1 Bool -> Bool -> Bool
&& Map k a
r1r2 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r1
then Map k a
t1
else k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k a
x Map k a
l1l2 Map k a
r1r2
| Bool
otherwise = Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l1l2 Map k a
r1r2
where
!(Map k b
l2, Bool
mb, Map k b
r2) = k -> Map k b -> (Map k b, Bool, Map k b)
forall k a. Ord k => k -> Map k a -> (Map k a, Bool, Map k a)
splitMember k
k Map k b
t2
!l1l2 :: Map k a
l1l2 = Map k a -> Map k b -> Map k a
forall k a b. Ord k => Map k a -> Map k b -> Map k a
intersection Map k a
l1 Map k b
l2
!r1r2 :: Map k a
r1r2 = Map k a -> Map k b -> Map k a
forall k a b. Ord k => Map k a -> Map k b -> Map k a
intersection Map k a
r1 Map k b
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE intersection #-}
#endif
restrictKeys :: Ord k => Map k a -> Set k -> Map k a
restrictKeys :: forall k a. Ord k => Map k a -> Set k -> Map k a
restrictKeys Map k a
Tip Set k
_ = Map k a
forall k a. Map k a
Tip
restrictKeys Map k a
_ Set k
Set.Tip = Map k a
forall k a. Map k a
Tip
restrictKeys m :: Map k a
m@(Bin Size
_ k
k a
x Map k a
l1 Map k a
r1) Set k
s
| Bool
b = if Map k a
l1l2 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l1 Bool -> Bool -> Bool
&& Map k a
r1r2 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r1
then Map k a
m
else k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k a
x Map k a
l1l2 Map k a
r1r2
| Bool
otherwise = Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l1l2 Map k a
r1r2
where
!(Set k
l2, Bool
b, Set k
r2) = k -> Set k -> (Set k, Bool, Set k)
forall a. Ord a => a -> Set a -> (Set a, Bool, Set a)
Set.splitMember k
k Set k
s
!l1l2 :: Map k a
l1l2 = Map k a -> Set k -> Map k a
forall k a. Ord k => Map k a -> Set k -> Map k a
restrictKeys Map k a
l1 Set k
l2
!r1r2 :: Map k a
r1r2 = Map k a -> Set k -> Map k a
forall k a. Ord k => Map k a -> Set k -> Map k a
restrictKeys Map k a
r1 Set k
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE restrictKeys #-}
#endif
intersectionWith :: Ord k => (a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith :: forall k a b c.
Ord k =>
(a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith a -> b -> c
_f Map k a
Tip Map k b
_ = Map k c
forall k a. Map k a
Tip
intersectionWith a -> b -> c
_f Map k a
_ Map k b
Tip = Map k c
forall k a. Map k a
Tip
intersectionWith a -> b -> c
f (Bin Size
_ k
k a
x1 Map k a
l1 Map k a
r1) Map k b
t2 = case Maybe b
mb of
Just b
x2 -> k -> c -> Map k c -> Map k c -> Map k c
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k (a -> b -> c
f a
x1 b
x2) Map k c
l1l2 Map k c
r1r2
Maybe b
Nothing -> Map k c -> Map k c -> Map k c
forall k a. Map k a -> Map k a -> Map k a
link2 Map k c
l1l2 Map k c
r1r2
where
!(Map k b
l2, Maybe b
mb, Map k b
r2) = k -> Map k b -> (Map k b, Maybe b, Map k b)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k Map k b
t2
!l1l2 :: Map k c
l1l2 = (a -> b -> c) -> Map k a -> Map k b -> Map k c
forall k a b c.
Ord k =>
(a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith a -> b -> c
f Map k a
l1 Map k b
l2
!r1r2 :: Map k c
r1r2 = (a -> b -> c) -> Map k a -> Map k b -> Map k c
forall k a b c.
Ord k =>
(a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith a -> b -> c
f Map k a
r1 Map k b
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE intersectionWith #-}
#endif
intersectionWithKey :: Ord k => (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey :: forall k a b c.
Ord k =>
(k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey k -> a -> b -> c
_f Map k a
Tip Map k b
_ = Map k c
forall k a. Map k a
Tip
intersectionWithKey k -> a -> b -> c
_f Map k a
_ Map k b
Tip = Map k c
forall k a. Map k a
Tip
intersectionWithKey k -> a -> b -> c
f (Bin Size
_ k
k a
x1 Map k a
l1 Map k a
r1) Map k b
t2 = case Maybe b
mb of
Just b
x2 -> k -> c -> Map k c -> Map k c -> Map k c
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k (k -> a -> b -> c
f k
k a
x1 b
x2) Map k c
l1l2 Map k c
r1r2
Maybe b
Nothing -> Map k c -> Map k c -> Map k c
forall k a. Map k a -> Map k a -> Map k a
link2 Map k c
l1l2 Map k c
r1r2
where
!(Map k b
l2, Maybe b
mb, Map k b
r2) = k -> Map k b -> (Map k b, Maybe b, Map k b)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k Map k b
t2
!l1l2 :: Map k c
l1l2 = (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
forall k a b c.
Ord k =>
(k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey k -> a -> b -> c
f Map k a
l1 Map k b
l2
!r1r2 :: Map k c
r1r2 = (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
forall k a b c.
Ord k =>
(k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey k -> a -> b -> c
f Map k a
r1 Map k b
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE intersectionWithKey #-}
#endif
disjoint :: Ord k => Map k a -> Map k b -> Bool
disjoint :: forall k a b. Ord k => Map k a -> Map k b -> Bool
disjoint Map k a
Tip Map k b
_ = Bool
True
disjoint Map k a
_ Map k b
Tip = Bool
True
disjoint (Bin Size
1 k
k a
_ Map k a
_ Map k a
_) Map k b
t = k
k k -> Map k b -> Bool
forall k a. Ord k => k -> Map k a -> Bool
`notMember` Map k b
t
disjoint (Bin Size
_ k
k a
_ Map k a
l Map k a
r) Map k b
t
= Bool -> Bool
not Bool
found Bool -> Bool -> Bool
&& Map k a -> Map k b -> Bool
forall k a b. Ord k => Map k a -> Map k b -> Bool
disjoint Map k a
l Map k b
lt Bool -> Bool -> Bool
&& Map k a -> Map k b -> Bool
forall k a b. Ord k => Map k a -> Map k b -> Bool
disjoint Map k a
r Map k b
gt
where
(Map k b
lt,Bool
found,Map k b
gt) = k -> Map k b -> (Map k b, Bool, Map k b)
forall k a. Ord k => k -> Map k a -> (Map k a, Bool, Map k a)
splitMember k
k Map k b
t
compose :: Ord b => Map b c -> Map a b -> Map a c
compose :: forall b c a. Ord b => Map b c -> Map a b -> Map a c
compose Map b c
bc !Map a b
ab
| Map b c -> Bool
forall k a. Map k a -> Bool
null Map b c
bc = Map a c
forall k a. Map k a
empty
| Bool
otherwise = (b -> Maybe c) -> Map a b -> Map a c
forall a b k. (a -> Maybe b) -> Map k a -> Map k b
mapMaybe (Map b c
bc Map b c -> b -> Maybe c
forall k a. Ord k => Map k a -> k -> Maybe a
!?) Map a b
ab
data WhenMissing f k x y = WhenMissing
{ forall (f :: * -> *) k x y.
WhenMissing f k x y -> Map k x -> f (Map k y)
missingSubtree :: Map k x -> f (Map k y)
, forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey :: k -> x -> f (Maybe y)}
instance (Applicative f, Monad f) => Functor (WhenMissing f k x) where
fmap :: forall a b. (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b
fmap = (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b
forall (f :: * -> *) a b k x.
(Applicative f, Monad f) =>
(a -> b) -> WhenMissing f k x a -> WhenMissing f k x b
mapWhenMissing
{-# INLINE fmap #-}
instance (Applicative f, Monad f)
=> Category.Category (WhenMissing f k) where
id :: forall a. WhenMissing f k a a
id = WhenMissing f k a a
forall (f :: * -> *) k x. Applicative f => WhenMissing f k x x
preserveMissing
WhenMissing f k b c
f . :: forall b c a.
WhenMissing f k b c -> WhenMissing f k a b -> WhenMissing f k a c
. WhenMissing f k a b
g = (k -> a -> f (Maybe c)) -> WhenMissing f k a c
forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> f (Maybe y)) -> WhenMissing f k x y
traverseMaybeMissing ((k -> a -> f (Maybe c)) -> WhenMissing f k a c)
-> (k -> a -> f (Maybe c)) -> WhenMissing f k a c
forall a b. (a -> b) -> a -> b
$
\ k
k a
x -> WhenMissing f k a b -> k -> a -> f (Maybe b)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k a b
g k
k a
x f (Maybe b) -> (Maybe b -> f (Maybe c)) -> f (Maybe c)
forall a b. f a -> (a -> f b) -> f b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \Maybe b
y ->
case Maybe b
y of
Maybe b
Nothing -> Maybe c -> f (Maybe c)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe c
forall a. Maybe a
Nothing
Just b
q -> WhenMissing f k b c -> k -> b -> f (Maybe c)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k b c
f k
k b
q
{-# INLINE id #-}
{-# INLINE (.) #-}
instance (Applicative f, Monad f) => Applicative (WhenMissing f k x) where
pure :: forall a. a -> WhenMissing f k x a
pure a
x = (k -> x -> a) -> WhenMissing f k x a
forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> y) -> WhenMissing f k x y
mapMissing (\ k
_ x
_ -> a
x)
WhenMissing f k x (a -> b)
f <*> :: forall a b.
WhenMissing f k x (a -> b)
-> WhenMissing f k x a -> WhenMissing f k x b
<*> WhenMissing f k x a
g = (k -> x -> f (Maybe b)) -> WhenMissing f k x b
forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> f (Maybe y)) -> WhenMissing f k x y
traverseMaybeMissing ((k -> x -> f (Maybe b)) -> WhenMissing f k x b)
-> (k -> x -> f (Maybe b)) -> WhenMissing f k x b
forall a b. (a -> b) -> a -> b
$ \k
k x
x -> do
Maybe (a -> b)
res1 <- WhenMissing f k x (a -> b) -> k -> x -> f (Maybe (a -> b))
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k x (a -> b)
f k
k x
x
case Maybe (a -> b)
res1 of
Maybe (a -> b)
Nothing -> Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
Just a -> b
r -> (Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe b -> f (Maybe b)) -> Maybe b -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$!) (Maybe b -> f (Maybe b))
-> (Maybe a -> Maybe b) -> Maybe a -> f (Maybe b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
r (Maybe a -> f (Maybe b)) -> f (Maybe a) -> f (Maybe b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< WhenMissing f k x a -> k -> x -> f (Maybe a)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k x a
g k
k x
x
{-# INLINE pure #-}
{-# INLINE (<*>) #-}
instance (Applicative f, Monad f) => Monad (WhenMissing f k x) where
WhenMissing f k x a
m >>= :: forall a b.
WhenMissing f k x a
-> (a -> WhenMissing f k x b) -> WhenMissing f k x b
>>= a -> WhenMissing f k x b
f = (k -> x -> f (Maybe b)) -> WhenMissing f k x b
forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> f (Maybe y)) -> WhenMissing f k x y
traverseMaybeMissing ((k -> x -> f (Maybe b)) -> WhenMissing f k x b)
-> (k -> x -> f (Maybe b)) -> WhenMissing f k x b
forall a b. (a -> b) -> a -> b
$ \k
k x
x -> do
Maybe a
res1 <- WhenMissing f k x a -> k -> x -> f (Maybe a)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k x a
m k
k x
x
case Maybe a
res1 of
Maybe a
Nothing -> Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
Just a
r -> WhenMissing f k x b -> k -> x -> f (Maybe b)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey (a -> WhenMissing f k x b
f a
r) k
k x
x
{-# INLINE (>>=) #-}
mapWhenMissing :: (Applicative f, Monad f)
=> (a -> b)
-> WhenMissing f k x a -> WhenMissing f k x b
mapWhenMissing :: forall (f :: * -> *) a b k x.
(Applicative f, Monad f) =>
(a -> b) -> WhenMissing f k x a -> WhenMissing f k x b
mapWhenMissing a -> b
f WhenMissing f k x a
t = WhenMissing
{ missingSubtree :: Map k x -> f (Map k b)
missingSubtree = \Map k x
m -> WhenMissing f k x a -> Map k x -> f (Map k a)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> Map k x -> f (Map k y)
missingSubtree WhenMissing f k x a
t Map k x
m f (Map k a) -> (Map k a -> f (Map k b)) -> f (Map k b)
forall a b. f a -> (a -> f b) -> f b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \Map k a
m' -> Map k b -> f (Map k b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Map k b -> f (Map k b)) -> Map k b -> f (Map k b)
forall a b. (a -> b) -> a -> b
$! (a -> b) -> Map k a -> Map k b
forall a b. (a -> b) -> Map k a -> Map k b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f Map k a
m'
, missingKey :: k -> x -> f (Maybe b)
missingKey = \k
k x
x -> WhenMissing f k x a -> k -> x -> f (Maybe a)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k x a
t k
k x
x f (Maybe a) -> (Maybe a -> f (Maybe b)) -> f (Maybe b)
forall a b. f a -> (a -> f b) -> f b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \Maybe a
q -> (Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe b -> f (Maybe b)) -> Maybe b -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$! (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f Maybe a
q) }
{-# INLINE mapWhenMissing #-}
mapGentlyWhenMissing :: Functor f
=> (a -> b)
-> WhenMissing f k x a -> WhenMissing f k x b
mapGentlyWhenMissing :: forall (f :: * -> *) a b k x.
Functor f =>
(a -> b) -> WhenMissing f k x a -> WhenMissing f k x b
mapGentlyWhenMissing a -> b
f WhenMissing f k x a
t = WhenMissing
{ missingSubtree :: Map k x -> f (Map k b)
missingSubtree = \Map k x
m -> (a -> b) -> Map k a -> Map k b
forall a b. (a -> b) -> Map k a -> Map k b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f (Map k a -> Map k b) -> f (Map k a) -> f (Map k b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> WhenMissing f k x a -> Map k x -> f (Map k a)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> Map k x -> f (Map k y)
missingSubtree WhenMissing f k x a
t Map k x
m
, missingKey :: k -> x -> f (Maybe b)
missingKey = \k
k x
x -> (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> WhenMissing f k x a -> k -> x -> f (Maybe a)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k x a
t k
k x
x }
{-# INLINE mapGentlyWhenMissing #-}
mapGentlyWhenMatched :: Functor f
=> (a -> b)
-> WhenMatched f k x y a -> WhenMatched f k x y b
mapGentlyWhenMatched :: forall (f :: * -> *) a b k x y.
Functor f =>
(a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b
mapGentlyWhenMatched a -> b
f WhenMatched f k x y a
t = (k -> x -> y -> f (Maybe b)) -> WhenMatched f k x y b
forall k x y (f :: * -> *) z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
zipWithMaybeAMatched ((k -> x -> y -> f (Maybe b)) -> WhenMatched f k x y b)
-> (k -> x -> y -> f (Maybe b)) -> WhenMatched f k x y b
forall a b. (a -> b) -> a -> b
$
\k
k x
x y
y -> (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> WhenMatched f k x y a -> k -> x -> y -> f (Maybe a)
forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k x y a
t k
k x
x y
y
{-# INLINE mapGentlyWhenMatched #-}
lmapWhenMissing :: (b -> a) -> WhenMissing f k a x -> WhenMissing f k b x
lmapWhenMissing :: forall b a (f :: * -> *) k x.
(b -> a) -> WhenMissing f k a x -> WhenMissing f k b x
lmapWhenMissing b -> a
f WhenMissing f k a x
t = WhenMissing
{ missingSubtree :: Map k b -> f (Map k x)
missingSubtree = \Map k b
m -> WhenMissing f k a x -> Map k a -> f (Map k x)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> Map k x -> f (Map k y)
missingSubtree WhenMissing f k a x
t ((b -> a) -> Map k b -> Map k a
forall a b. (a -> b) -> Map k a -> Map k b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> a
f Map k b
m)
, missingKey :: k -> b -> f (Maybe x)
missingKey = \k
k b
x -> WhenMissing f k a x -> k -> a -> f (Maybe x)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k a x
t k
k (b -> a
f b
x) }
{-# INLINE lmapWhenMissing #-}
contramapFirstWhenMatched :: (b -> a)
-> WhenMatched f k a y z
-> WhenMatched f k b y z
contramapFirstWhenMatched :: forall b a (f :: * -> *) k y z.
(b -> a) -> WhenMatched f k a y z -> WhenMatched f k b y z
contramapFirstWhenMatched b -> a
f WhenMatched f k a y z
t = (k -> b -> y -> f (Maybe z)) -> WhenMatched f k b y z
forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched ((k -> b -> y -> f (Maybe z)) -> WhenMatched f k b y z)
-> (k -> b -> y -> f (Maybe z)) -> WhenMatched f k b y z
forall a b. (a -> b) -> a -> b
$
\k
k b
x y
y -> WhenMatched f k a y z -> k -> a -> y -> f (Maybe z)
forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k a y z
t k
k (b -> a
f b
x) y
y
{-# INLINE contramapFirstWhenMatched #-}
contramapSecondWhenMatched :: (b -> a)
-> WhenMatched f k x a z
-> WhenMatched f k x b z
contramapSecondWhenMatched :: forall b a (f :: * -> *) k x z.
(b -> a) -> WhenMatched f k x a z -> WhenMatched f k x b z
contramapSecondWhenMatched b -> a
f WhenMatched f k x a z
t = (k -> x -> b -> f (Maybe z)) -> WhenMatched f k x b z
forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched ((k -> x -> b -> f (Maybe z)) -> WhenMatched f k x b z)
-> (k -> x -> b -> f (Maybe z)) -> WhenMatched f k x b z
forall a b. (a -> b) -> a -> b
$
\k
k x
x b
y -> WhenMatched f k x a z -> k -> x -> a -> f (Maybe z)
forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k x a z
t k
k x
x (b -> a
f b
y)
{-# INLINE contramapSecondWhenMatched #-}
type SimpleWhenMissing = WhenMissing Identity
newtype WhenMatched f k x y z = WhenMatched
{ forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
matchedKey :: k -> x -> y -> f (Maybe z) }
runWhenMatched :: WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched :: forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched = WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
matchedKey
{-# INLINE runWhenMatched #-}
runWhenMissing :: WhenMissing f k x y -> k -> x -> f (Maybe y)
runWhenMissing :: forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
runWhenMissing = WhenMissing f k x y -> k -> x -> f (Maybe y)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey
{-# INLINE runWhenMissing #-}
instance Functor f => Functor (WhenMatched f k x y) where
fmap :: forall a b.
(a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b
fmap = (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b
forall (f :: * -> *) a b k x y.
Functor f =>
(a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b
mapWhenMatched
{-# INLINE fmap #-}
instance (Monad f, Applicative f) => Category.Category (WhenMatched f k x) where
id :: forall a. WhenMatched f k x a a
id = (k -> x -> a -> a) -> WhenMatched f k x a a
forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> z) -> WhenMatched f k x y z
zipWithMatched (\k
_ x
_ a
y -> a
y)
WhenMatched f k x b c
f . :: forall b c a.
WhenMatched f k x b c
-> WhenMatched f k x a b -> WhenMatched f k x a c
. WhenMatched f k x a b
g = (k -> x -> a -> f (Maybe c)) -> WhenMatched f k x a c
forall k x y (f :: * -> *) z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
zipWithMaybeAMatched ((k -> x -> a -> f (Maybe c)) -> WhenMatched f k x a c)
-> (k -> x -> a -> f (Maybe c)) -> WhenMatched f k x a c
forall a b. (a -> b) -> a -> b
$
\k
k x
x a
y -> do
Maybe b
res <- WhenMatched f k x a b -> k -> x -> a -> f (Maybe b)
forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k x a b
g k
k x
x a
y
case Maybe b
res of
Maybe b
Nothing -> Maybe c -> f (Maybe c)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe c
forall a. Maybe a
Nothing
Just b
r -> WhenMatched f k x b c -> k -> x -> b -> f (Maybe c)
forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k x b c
f k
k x
x b
r
{-# INLINE id #-}
{-# INLINE (.) #-}
instance (Monad f, Applicative f) => Applicative (WhenMatched f k x y) where
pure :: forall a. a -> WhenMatched f k x y a
pure a
x = (k -> x -> y -> a) -> WhenMatched f k x y a
forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> z) -> WhenMatched f k x y z
zipWithMatched (\k
_ x
_ y
_ -> a
x)
WhenMatched f k x y (a -> b)
fs <*> :: forall a b.
WhenMatched f k x y (a -> b)
-> WhenMatched f k x y a -> WhenMatched f k x y b
<*> WhenMatched f k x y a
xs = (k -> x -> y -> f (Maybe b)) -> WhenMatched f k x y b
forall k x y (f :: * -> *) z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
zipWithMaybeAMatched ((k -> x -> y -> f (Maybe b)) -> WhenMatched f k x y b)
-> (k -> x -> y -> f (Maybe b)) -> WhenMatched f k x y b
forall a b. (a -> b) -> a -> b
$ \k
k x
x y
y -> do
Maybe (a -> b)
res <- WhenMatched f k x y (a -> b) -> k -> x -> y -> f (Maybe (a -> b))
forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k x y (a -> b)
fs k
k x
x y
y
case Maybe (a -> b)
res of
Maybe (a -> b)
Nothing -> Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
Just a -> b
r -> (Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe b -> f (Maybe b)) -> Maybe b -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$!) (Maybe b -> f (Maybe b))
-> (Maybe a -> Maybe b) -> Maybe a -> f (Maybe b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
r (Maybe a -> f (Maybe b)) -> f (Maybe a) -> f (Maybe b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< WhenMatched f k x y a -> k -> x -> y -> f (Maybe a)
forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k x y a
xs k
k x
x y
y
{-# INLINE pure #-}
{-# INLINE (<*>) #-}
instance (Monad f, Applicative f) => Monad (WhenMatched f k x y) where
WhenMatched f k x y a
m >>= :: forall a b.
WhenMatched f k x y a
-> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b
>>= a -> WhenMatched f k x y b
f = (k -> x -> y -> f (Maybe b)) -> WhenMatched f k x y b
forall k x y (f :: * -> *) z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
zipWithMaybeAMatched ((k -> x -> y -> f (Maybe b)) -> WhenMatched f k x y b)
-> (k -> x -> y -> f (Maybe b)) -> WhenMatched f k x y b
forall a b. (a -> b) -> a -> b
$ \k
k x
x y
y -> do
Maybe a
res <- WhenMatched f k x y a -> k -> x -> y -> f (Maybe a)
forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k x y a
m k
k x
x y
y
case Maybe a
res of
Maybe a
Nothing -> Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
Just a
r -> WhenMatched f k x y b -> k -> x -> y -> f (Maybe b)
forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched (a -> WhenMatched f k x y b
f a
r) k
k x
x y
y
{-# INLINE (>>=) #-}
mapWhenMatched :: Functor f
=> (a -> b)
-> WhenMatched f k x y a
-> WhenMatched f k x y b
mapWhenMatched :: forall (f :: * -> *) a b k x y.
Functor f =>
(a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b
mapWhenMatched a -> b
f (WhenMatched k -> x -> y -> f (Maybe a)
g) = (k -> x -> y -> f (Maybe b)) -> WhenMatched f k x y b
forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched ((k -> x -> y -> f (Maybe b)) -> WhenMatched f k x y b)
-> (k -> x -> y -> f (Maybe b)) -> WhenMatched f k x y b
forall a b. (a -> b) -> a -> b
$ \k
k x
x y
y -> (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f) (k -> x -> y -> f (Maybe a)
g k
k x
x y
y)
{-# INLINE mapWhenMatched #-}
type SimpleWhenMatched = WhenMatched Identity
zipWithMatched :: Applicative f
=> (k -> x -> y -> z)
-> WhenMatched f k x y z
zipWithMatched :: forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> z) -> WhenMatched f k x y z
zipWithMatched k -> x -> y -> z
f = (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched ((k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z)
-> (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall a b. (a -> b) -> a -> b
$ \ k
k x
x y
y -> Maybe z -> f (Maybe z)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe z -> f (Maybe z)) -> (z -> Maybe z) -> z -> f (Maybe z)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. z -> Maybe z
forall a. a -> Maybe a
Just (z -> f (Maybe z)) -> z -> f (Maybe z)
forall a b. (a -> b) -> a -> b
$ k -> x -> y -> z
f k
k x
x y
y
{-# INLINE zipWithMatched #-}
zipWithAMatched :: Applicative f
=> (k -> x -> y -> f z)
-> WhenMatched f k x y z
zipWithAMatched :: forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> f z) -> WhenMatched f k x y z
zipWithAMatched k -> x -> y -> f z
f = (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched ((k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z)
-> (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall a b. (a -> b) -> a -> b
$ \ k
k x
x y
y -> z -> Maybe z
forall a. a -> Maybe a
Just (z -> Maybe z) -> f z -> f (Maybe z)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> x -> y -> f z
f k
k x
x y
y
{-# INLINE zipWithAMatched #-}
zipWithMaybeMatched :: Applicative f
=> (k -> x -> y -> Maybe z)
-> WhenMatched f k x y z
zipWithMaybeMatched :: forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> Maybe z) -> WhenMatched f k x y z
zipWithMaybeMatched k -> x -> y -> Maybe z
f = (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched ((k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z)
-> (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall a b. (a -> b) -> a -> b
$ \ k
k x
x y
y -> Maybe z -> f (Maybe z)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe z -> f (Maybe z)) -> Maybe z -> f (Maybe z)
forall a b. (a -> b) -> a -> b
$ k -> x -> y -> Maybe z
f k
k x
x y
y
{-# INLINE zipWithMaybeMatched #-}
zipWithMaybeAMatched :: (k -> x -> y -> f (Maybe z))
-> WhenMatched f k x y z
zipWithMaybeAMatched :: forall k x y (f :: * -> *) z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
zipWithMaybeAMatched k -> x -> y -> f (Maybe z)
f = (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched ((k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z)
-> (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall a b. (a -> b) -> a -> b
$ \ k
k x
x y
y -> k -> x -> y -> f (Maybe z)
f k
k x
x y
y
{-# INLINE zipWithMaybeAMatched #-}
dropMissing :: Applicative f => WhenMissing f k x y
dropMissing :: forall (f :: * -> *) k x y. Applicative f => WhenMissing f k x y
dropMissing = WhenMissing
{ missingSubtree :: Map k x -> f (Map k y)
missingSubtree = f (Map k y) -> Map k x -> f (Map k y)
forall a b. a -> b -> a
const (Map k y -> f (Map k y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Map k y
forall k a. Map k a
Tip)
, missingKey :: k -> x -> f (Maybe y)
missingKey = \k
_ x
_ -> Maybe y -> f (Maybe y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe y
forall a. Maybe a
Nothing }
{-# INLINE dropMissing #-}
preserveMissing :: Applicative f => WhenMissing f k x x
preserveMissing :: forall (f :: * -> *) k x. Applicative f => WhenMissing f k x x
preserveMissing = WhenMissing
{ missingSubtree :: Map k x -> f (Map k x)
missingSubtree = Map k x -> f (Map k x)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
, missingKey :: k -> x -> f (Maybe x)
missingKey = \k
_ x
v -> Maybe x -> f (Maybe x)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (x -> Maybe x
forall a. a -> Maybe a
Just x
v) }
{-# INLINE preserveMissing #-}
preserveMissing' :: Applicative f => WhenMissing f k x x
preserveMissing' :: forall (f :: * -> *) k x. Applicative f => WhenMissing f k x x
preserveMissing' = WhenMissing
{ missingSubtree :: Map k x -> f (Map k x)
missingSubtree = \Map k x
t -> Map k x -> f (Map k x)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Map k x -> f (Map k x)) -> Map k x -> f (Map k x)
forall a b. (a -> b) -> a -> b
$! Map k x -> ()
forall k a. Map k a -> ()
forceTree Map k x
t () -> Map k x -> Map k x
forall a b. a -> b -> b
`seq` Map k x
t
, missingKey :: k -> x -> f (Maybe x)
missingKey = \k
_ x
v -> Maybe x -> f (Maybe x)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe x -> f (Maybe x)) -> Maybe x -> f (Maybe x)
forall a b. (a -> b) -> a -> b
$! x -> Maybe x
forall a. a -> Maybe a
Just (x -> Maybe x) -> x -> Maybe x
forall a b. (a -> b) -> a -> b
$! x
v }
{-# INLINE preserveMissing' #-}
forceTree :: Map k a -> ()
forceTree :: forall k a. Map k a -> ()
forceTree (Bin Size
_ k
_ a
v Map k a
l Map k a
r) = a
v a -> () -> ()
forall a b. a -> b -> b
`seq` Map k a -> ()
forall k a. Map k a -> ()
forceTree Map k a
l () -> () -> ()
forall a b. a -> b -> b
`seq` Map k a -> ()
forall k a. Map k a -> ()
forceTree Map k a
r () -> () -> ()
forall a b. a -> b -> b
`seq` ()
forceTree Map k a
Tip = ()
mapMissing :: Applicative f => (k -> x -> y) -> WhenMissing f k x y
mapMissing :: forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> y) -> WhenMissing f k x y
mapMissing k -> x -> y
f = WhenMissing
{ missingSubtree :: Map k x -> f (Map k y)
missingSubtree = \Map k x
m -> Map k y -> f (Map k y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Map k y -> f (Map k y)) -> Map k y -> f (Map k y)
forall a b. (a -> b) -> a -> b
$! (k -> x -> y) -> Map k x -> Map k y
forall k a b. (k -> a -> b) -> Map k a -> Map k b
mapWithKey k -> x -> y
f Map k x
m
, missingKey :: k -> x -> f (Maybe y)
missingKey = \ k
k x
x -> Maybe y -> f (Maybe y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe y -> f (Maybe y)) -> Maybe y -> f (Maybe y)
forall a b. (a -> b) -> a -> b
$ y -> Maybe y
forall a. a -> Maybe a
Just (k -> x -> y
f k
k x
x) }
{-# INLINE mapMissing #-}
mapMaybeMissing :: Applicative f => (k -> x -> Maybe y) -> WhenMissing f k x y
mapMaybeMissing :: forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> Maybe y) -> WhenMissing f k x y
mapMaybeMissing k -> x -> Maybe y
f = WhenMissing
{ missingSubtree :: Map k x -> f (Map k y)
missingSubtree = \Map k x
m -> Map k y -> f (Map k y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Map k y -> f (Map k y)) -> Map k y -> f (Map k y)
forall a b. (a -> b) -> a -> b
$! (k -> x -> Maybe y) -> Map k x -> Map k y
forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> x -> Maybe y
f Map k x
m
, missingKey :: k -> x -> f (Maybe y)
missingKey = \k
k x
x -> Maybe y -> f (Maybe y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe y -> f (Maybe y)) -> Maybe y -> f (Maybe y)
forall a b. (a -> b) -> a -> b
$! k -> x -> Maybe y
f k
k x
x }
{-# INLINE mapMaybeMissing #-}
filterMissing :: Applicative f
=> (k -> x -> Bool) -> WhenMissing f k x x
filterMissing :: forall (f :: * -> *) k x.
Applicative f =>
(k -> x -> Bool) -> WhenMissing f k x x
filterMissing k -> x -> Bool
f = WhenMissing
{ missingSubtree :: Map k x -> f (Map k x)
missingSubtree = \Map k x
m -> Map k x -> f (Map k x)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Map k x -> f (Map k x)) -> Map k x -> f (Map k x)
forall a b. (a -> b) -> a -> b
$! (k -> x -> Bool) -> Map k x -> Map k x
forall k a. (k -> a -> Bool) -> Map k a -> Map k a
filterWithKey k -> x -> Bool
f Map k x
m
, missingKey :: k -> x -> f (Maybe x)
missingKey = \k
k x
x -> Maybe x -> f (Maybe x)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe x -> f (Maybe x)) -> Maybe x -> f (Maybe x)
forall a b. (a -> b) -> a -> b
$! if k -> x -> Bool
f k
k x
x then x -> Maybe x
forall a. a -> Maybe a
Just x
x else Maybe x
forall a. Maybe a
Nothing }
{-# INLINE filterMissing #-}
filterAMissing :: Applicative f
=> (k -> x -> f Bool) -> WhenMissing f k x x
filterAMissing :: forall (f :: * -> *) k x.
Applicative f =>
(k -> x -> f Bool) -> WhenMissing f k x x
filterAMissing k -> x -> f Bool
f = WhenMissing
{ missingSubtree :: Map k x -> f (Map k x)
missingSubtree = \Map k x
m -> (k -> x -> f Bool) -> Map k x -> f (Map k x)
forall (f :: * -> *) k a.
Applicative f =>
(k -> a -> f Bool) -> Map k a -> f (Map k a)
filterWithKeyA k -> x -> f Bool
f Map k x
m
, missingKey :: k -> x -> f (Maybe x)
missingKey = \k
k x
x -> Maybe x -> Maybe x -> Bool -> Maybe x
forall a. a -> a -> Bool -> a
bool Maybe x
forall a. Maybe a
Nothing (x -> Maybe x
forall a. a -> Maybe a
Just x
x) (Bool -> Maybe x) -> f Bool -> f (Maybe x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> x -> f Bool
f k
k x
x }
{-# INLINE filterAMissing #-}
bool :: a -> a -> Bool -> a
bool :: forall a. a -> a -> Bool -> a
bool a
f a
_ Bool
False = a
f
bool a
_ a
t Bool
True = a
t
traverseMissing :: Applicative f
=> (k -> x -> f y) -> WhenMissing f k x y
traverseMissing :: forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> f y) -> WhenMissing f k x y
traverseMissing k -> x -> f y
f = WhenMissing
{ missingSubtree :: Map k x -> f (Map k y)
missingSubtree = (k -> x -> f y) -> Map k x -> f (Map k y)
forall (t :: * -> *) k a b.
Applicative t =>
(k -> a -> t b) -> Map k a -> t (Map k b)
traverseWithKey k -> x -> f y
f
, missingKey :: k -> x -> f (Maybe y)
missingKey = \k
k x
x -> y -> Maybe y
forall a. a -> Maybe a
Just (y -> Maybe y) -> f y -> f (Maybe y)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> x -> f y
f k
k x
x }
{-# INLINE traverseMissing #-}
traverseMaybeMissing :: Applicative f
=> (k -> x -> f (Maybe y)) -> WhenMissing f k x y
traverseMaybeMissing :: forall (f :: * -> *) k x y.
Applicative f =>
(k -> x -> f (Maybe y)) -> WhenMissing f k x y
traverseMaybeMissing k -> x -> f (Maybe y)
f = WhenMissing
{ missingSubtree :: Map k x -> f (Map k y)
missingSubtree = (k -> x -> f (Maybe y)) -> Map k x -> f (Map k y)
forall (f :: * -> *) k a b.
Applicative f =>
(k -> a -> f (Maybe b)) -> Map k a -> f (Map k b)
traverseMaybeWithKey k -> x -> f (Maybe y)
f
, missingKey :: k -> x -> f (Maybe y)
missingKey = k -> x -> f (Maybe y)
f }
{-# INLINE traverseMaybeMissing #-}
merge :: Ord k
=> SimpleWhenMissing k a c
-> SimpleWhenMissing k b c
-> SimpleWhenMatched k a b c
-> Map k a
-> Map k b
-> Map k c
merge :: forall k a c b.
Ord k =>
SimpleWhenMissing k a c
-> SimpleWhenMissing k b c
-> SimpleWhenMatched k a b c
-> Map k a
-> Map k b
-> Map k c
merge SimpleWhenMissing k a c
g1 SimpleWhenMissing k b c
g2 SimpleWhenMatched k a b c
f Map k a
m1 Map k b
m2 = Identity (Map k c) -> Map k c
forall a. Identity a -> a
runIdentity (Identity (Map k c) -> Map k c) -> Identity (Map k c) -> Map k c
forall a b. (a -> b) -> a -> b
$
SimpleWhenMissing k a c
-> SimpleWhenMissing k b c
-> SimpleWhenMatched k a b c
-> Map k a
-> Map k b
-> Identity (Map k c)
forall (f :: * -> *) k a c b.
(Applicative f, Ord k) =>
WhenMissing f k a c
-> WhenMissing f k b c
-> WhenMatched f k a b c
-> Map k a
-> Map k b
-> f (Map k c)
mergeA SimpleWhenMissing k a c
g1 SimpleWhenMissing k b c
g2 SimpleWhenMatched k a b c
f Map k a
m1 Map k b
m2
{-# INLINE merge #-}
mergeA
:: (Applicative f, Ord k)
=> WhenMissing f k a c
-> WhenMissing f k b c
-> WhenMatched f k a b c
-> Map k a
-> Map k b
-> f (Map k c)
mergeA :: forall (f :: * -> *) k a c b.
(Applicative f, Ord k) =>
WhenMissing f k a c
-> WhenMissing f k b c
-> WhenMatched f k a b c
-> Map k a
-> Map k b
-> f (Map k c)
mergeA
WhenMissing{missingSubtree :: forall (f :: * -> *) k x y.
WhenMissing f k x y -> Map k x -> f (Map k y)
missingSubtree = Map k a -> f (Map k c)
g1t, missingKey :: forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey = k -> a -> f (Maybe c)
g1k}
WhenMissing{missingSubtree :: forall (f :: * -> *) k x y.
WhenMissing f k x y -> Map k x -> f (Map k y)
missingSubtree = Map k b -> f (Map k c)
g2t}
(WhenMatched k -> a -> b -> f (Maybe c)
f) = Map k a -> Map k b -> f (Map k c)
go
where
go :: Map k a -> Map k b -> f (Map k c)
go Map k a
t1 Map k b
Tip = Map k a -> f (Map k c)
g1t Map k a
t1
go Map k a
Tip Map k b
t2 = Map k b -> f (Map k c)
g2t Map k b
t2
go (Bin Size
_ k
kx a
x1 Map k a
l1 Map k a
r1) Map k b
t2 = case k -> Map k b -> (Map k b, Maybe b, Map k b)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
kx Map k b
t2 of
(Map k b
l2, Maybe b
mx2, Map k b
r2) -> case Maybe b
mx2 of
Maybe b
Nothing -> (Map k c -> Maybe c -> Map k c -> Map k c)
-> f (Map k c) -> f (Maybe c) -> f (Map k c) -> f (Map k c)
forall (f :: * -> *) a b c d.
Applicative f =>
(a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 (\Map k c
l' Maybe c
mx' Map k c
r' -> (Map k c -> Map k c -> Map k c)
-> (c -> Map k c -> Map k c -> Map k c)
-> Maybe c
-> Map k c
-> Map k c
-> Map k c
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Map k c -> Map k c -> Map k c
forall k a. Map k a -> Map k a -> Map k a
link2 (k -> c -> Map k c -> Map k c -> Map k c
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx) Maybe c
mx' Map k c
l' Map k c
r')
f (Map k c)
l1l2 (k -> a -> f (Maybe c)
g1k k
kx a
x1) f (Map k c)
r1r2
Just b
x2 -> (Map k c -> Maybe c -> Map k c -> Map k c)
-> f (Map k c) -> f (Maybe c) -> f (Map k c) -> f (Map k c)
forall (f :: * -> *) a b c d.
Applicative f =>
(a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 (\Map k c
l' Maybe c
mx' Map k c
r' -> (Map k c -> Map k c -> Map k c)
-> (c -> Map k c -> Map k c -> Map k c)
-> Maybe c
-> Map k c
-> Map k c
-> Map k c
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Map k c -> Map k c -> Map k c
forall k a. Map k a -> Map k a -> Map k a
link2 (k -> c -> Map k c -> Map k c -> Map k c
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx) Maybe c
mx' Map k c
l' Map k c
r')
f (Map k c)
l1l2 (k -> a -> b -> f (Maybe c)
f k
kx a
x1 b
x2) f (Map k c)
r1r2
where
!l1l2 :: f (Map k c)
l1l2 = Map k a -> Map k b -> f (Map k c)
go Map k a
l1 Map k b
l2
!r1r2 :: f (Map k c)
r1r2 = Map k a -> Map k b -> f (Map k c)
go Map k a
r1 Map k b
r2
{-# INLINE mergeA #-}
mergeWithKey :: Ord k
=> (k -> a -> b -> Maybe c)
-> (Map k a -> Map k c)
-> (Map k b -> Map k c)
-> Map k a -> Map k b -> Map k c
mergeWithKey :: forall k a b c.
Ord k =>
(k -> a -> b -> Maybe c)
-> (Map k a -> Map k c)
-> (Map k b -> Map k c)
-> Map k a
-> Map k b
-> Map k c
mergeWithKey k -> a -> b -> Maybe c
f Map k a -> Map k c
g1 Map k b -> Map k c
g2 = Map k a -> Map k b -> Map k c
go
where
go :: Map k a -> Map k b -> Map k c
go Map k a
Tip Map k b
t2 = Map k b -> Map k c
g2 Map k b
t2
go Map k a
t1 Map k b
Tip = Map k a -> Map k c
g1 Map k a
t1
go (Bin Size
_ k
kx a
x Map k a
l1 Map k a
r1) Map k b
t2 =
case Maybe b
found of
Maybe b
Nothing -> case Map k a -> Map k c
g1 (k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x) of
Map k c
Tip -> Map k c -> Map k c -> Map k c
forall k a. Map k a -> Map k a -> Map k a
link2 Map k c
l' Map k c
r'
(Bin Size
_ k
_ c
x' Map k c
Tip Map k c
Tip) -> k -> c -> Map k c -> Map k c -> Map k c
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx c
x' Map k c
l' Map k c
r'
Map k c
_ -> [Char] -> Map k c
forall a. HasCallStack => [Char] -> a
error [Char]
"mergeWithKey: Given function only1 does not fulfill required conditions (see documentation)"
Just b
x2 -> case k -> a -> b -> Maybe c
f k
kx a
x b
x2 of
Maybe c
Nothing -> Map k c -> Map k c -> Map k c
forall k a. Map k a -> Map k a -> Map k a
link2 Map k c
l' Map k c
r'
Just c
x' -> k -> c -> Map k c -> Map k c -> Map k c
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx c
x' Map k c
l' Map k c
r'
where
(Map k b
l2, Maybe b
found, Map k b
r2) = k -> Map k b -> (Map k b, Maybe b, Map k b)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
kx Map k b
t2
l' :: Map k c
l' = Map k a -> Map k b -> Map k c
go Map k a
l1 Map k b
l2
r' :: Map k c
r' = Map k a -> Map k b -> Map k c
go Map k a
r1 Map k b
r2
{-# INLINE mergeWithKey #-}
isSubmapOf :: (Ord k,Eq a) => Map k a -> Map k a -> Bool
isSubmapOf :: forall k a. (Ord k, Eq a) => Map k a -> Map k a -> Bool
isSubmapOf Map k a
m1 Map k a
m2 = (a -> a -> Bool) -> Map k a -> Map k a -> Bool
forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
isSubmapOfBy a -> a -> Bool
forall a. Eq a => a -> a -> Bool
(==) Map k a
m1 Map k a
m2
#if __GLASGOW_HASKELL__
{-# INLINABLE isSubmapOf #-}
#endif
isSubmapOfBy :: Ord k => (a->b->Bool) -> Map k a -> Map k b -> Bool
isSubmapOfBy :: forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
isSubmapOfBy a -> b -> Bool
f Map k a
t1 Map k b
t2
= Map k a -> Size
forall k a. Map k a -> Size
size Map k a
t1 Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Map k b -> Size
forall k a. Map k a -> Size
size Map k b
t2 Bool -> Bool -> Bool
&& (a -> b -> Bool) -> Map k a -> Map k b -> Bool
forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
submap' a -> b -> Bool
f Map k a
t1 Map k b
t2
#if __GLASGOW_HASKELL__
{-# INLINABLE isSubmapOfBy #-}
#endif
submap' :: Ord a => (b -> c -> Bool) -> Map a b -> Map a c -> Bool
submap' :: forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
submap' b -> c -> Bool
_ Map a b
Tip Map a c
_ = Bool
True
submap' b -> c -> Bool
_ Map a b
_ Map a c
Tip = Bool
False
submap' b -> c -> Bool
f (Bin Size
1 a
kx b
x Map a b
_ Map a b
_) Map a c
t
= case a -> Map a c -> Maybe c
forall k a. Ord k => k -> Map k a -> Maybe a
lookup a
kx Map a c
t of
Just c
y -> b -> c -> Bool
f b
x c
y
Maybe c
Nothing -> Bool
False
submap' b -> c -> Bool
f (Bin Size
_ a
kx b
x Map a b
l Map a b
r) Map a c
t
= case Maybe c
found of
Maybe c
Nothing -> Bool
False
Just c
y -> b -> c -> Bool
f b
x c
y
Bool -> Bool -> Bool
&& Map a b -> Size
forall k a. Map k a -> Size
size Map a b
l Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Map a c -> Size
forall k a. Map k a -> Size
size Map a c
lt Bool -> Bool -> Bool
&& Map a b -> Size
forall k a. Map k a -> Size
size Map a b
r Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Map a c -> Size
forall k a. Map k a -> Size
size Map a c
gt
Bool -> Bool -> Bool
&& (b -> c -> Bool) -> Map a b -> Map a c -> Bool
forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
submap' b -> c -> Bool
f Map a b
l Map a c
lt Bool -> Bool -> Bool
&& (b -> c -> Bool) -> Map a b -> Map a c -> Bool
forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
submap' b -> c -> Bool
f Map a b
r Map a c
gt
where
(Map a c
lt,Maybe c
found,Map a c
gt) = a -> Map a c -> (Map a c, Maybe c, Map a c)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup a
kx Map a c
t
#if __GLASGOW_HASKELL__
{-# INLINABLE submap' #-}
#endif
isProperSubmapOf :: (Ord k,Eq a) => Map k a -> Map k a -> Bool
isProperSubmapOf :: forall k a. (Ord k, Eq a) => Map k a -> Map k a -> Bool
isProperSubmapOf Map k a
m1 Map k a
m2
= (a -> a -> Bool) -> Map k a -> Map k a -> Bool
forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
isProperSubmapOfBy a -> a -> Bool
forall a. Eq a => a -> a -> Bool
(==) Map k a
m1 Map k a
m2
#if __GLASGOW_HASKELL__
{-# INLINABLE isProperSubmapOf #-}
#endif
isProperSubmapOfBy :: Ord k => (a -> b -> Bool) -> Map k a -> Map k b -> Bool
isProperSubmapOfBy :: forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
isProperSubmapOfBy a -> b -> Bool
f Map k a
t1 Map k b
t2
= Map k a -> Size
forall k a. Map k a -> Size
size Map k a
t1 Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Map k b -> Size
forall k a. Map k a -> Size
size Map k b
t2 Bool -> Bool -> Bool
&& (a -> b -> Bool) -> Map k a -> Map k b -> Bool
forall k a b.
Ord k =>
(a -> b -> Bool) -> Map k a -> Map k b -> Bool
submap' a -> b -> Bool
f Map k a
t1 Map k b
t2
#if __GLASGOW_HASKELL__
{-# INLINABLE isProperSubmapOfBy #-}
#endif
filter :: (a -> Bool) -> Map k a -> Map k a
filter :: forall a k. (a -> Bool) -> Map k a -> Map k a
filter a -> Bool
p Map k a
m
= (k -> a -> Bool) -> Map k a -> Map k a
forall k a. (k -> a -> Bool) -> Map k a -> Map k a
filterWithKey (\k
_ a
x -> a -> Bool
p a
x) Map k a
m
filterWithKey :: (k -> a -> Bool) -> Map k a -> Map k a
filterWithKey :: forall k a. (k -> a -> Bool) -> Map k a -> Map k a
filterWithKey k -> a -> Bool
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
filterWithKey k -> a -> Bool
p t :: Map k a
t@(Bin Size
_ k
kx a
x Map k a
l Map k a
r)
| k -> a -> Bool
p k
kx a
x = if Map k a
pl Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l Bool -> Bool -> Bool
&& Map k a
pr Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r
then Map k a
t
else k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
pl Map k a
pr
| Bool
otherwise = Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
pl Map k a
pr
where !pl :: Map k a
pl = (k -> a -> Bool) -> Map k a -> Map k a
forall k a. (k -> a -> Bool) -> Map k a -> Map k a
filterWithKey k -> a -> Bool
p Map k a
l
!pr :: Map k a
pr = (k -> a -> Bool) -> Map k a -> Map k a
forall k a. (k -> a -> Bool) -> Map k a -> Map k a
filterWithKey k -> a -> Bool
p Map k a
r
filterWithKeyA :: Applicative f => (k -> a -> f Bool) -> Map k a -> f (Map k a)
filterWithKeyA :: forall (f :: * -> *) k a.
Applicative f =>
(k -> a -> f Bool) -> Map k a -> f (Map k a)
filterWithKeyA k -> a -> f Bool
_ Map k a
Tip = Map k a -> f (Map k a)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Map k a
forall k a. Map k a
Tip
filterWithKeyA k -> a -> f Bool
p t :: Map k a
t@(Bin Size
_ k
kx a
x Map k a
l Map k a
r) =
(Bool -> Map k a -> Map k a -> Map k a)
-> f Bool -> f (Map k a) -> f (Map k a) -> f (Map k a)
forall (f :: * -> *) a b c d.
Applicative f =>
(a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 Bool -> Map k a -> Map k a -> Map k a
combine (k -> a -> f Bool
p k
kx a
x) ((k -> a -> f Bool) -> Map k a -> f (Map k a)
forall (f :: * -> *) k a.
Applicative f =>
(k -> a -> f Bool) -> Map k a -> f (Map k a)
filterWithKeyA k -> a -> f Bool
p Map k a
l) ((k -> a -> f Bool) -> Map k a -> f (Map k a)
forall (f :: * -> *) k a.
Applicative f =>
(k -> a -> f Bool) -> Map k a -> f (Map k a)
filterWithKeyA k -> a -> f Bool
p Map k a
r)
where
combine :: Bool -> Map k a -> Map k a -> Map k a
combine Bool
True Map k a
pl Map k a
pr
| Map k a
pl Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l Bool -> Bool -> Bool
&& Map k a
pr Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r = Map k a
t
| Bool
otherwise = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
pl Map k a
pr
combine Bool
False Map k a
pl Map k a
pr = Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
pl Map k a
pr
takeWhileAntitone :: (k -> Bool) -> Map k a -> Map k a
takeWhileAntitone :: forall k a. (k -> Bool) -> Map k a -> Map k a
takeWhileAntitone k -> Bool
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
takeWhileAntitone k -> Bool
p (Bin Size
_ k
kx a
x Map k a
l Map k a
r)
| k -> Bool
p k
kx = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l ((k -> Bool) -> Map k a -> Map k a
forall k a. (k -> Bool) -> Map k a -> Map k a
takeWhileAntitone k -> Bool
p Map k a
r)
| Bool
otherwise = (k -> Bool) -> Map k a -> Map k a
forall k a. (k -> Bool) -> Map k a -> Map k a
takeWhileAntitone k -> Bool
p Map k a
l
dropWhileAntitone :: (k -> Bool) -> Map k a -> Map k a
dropWhileAntitone :: forall k a. (k -> Bool) -> Map k a -> Map k a
dropWhileAntitone k -> Bool
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
dropWhileAntitone k -> Bool
p (Bin Size
_ k
kx a
x Map k a
l Map k a
r)
| k -> Bool
p k
kx = (k -> Bool) -> Map k a -> Map k a
forall k a. (k -> Bool) -> Map k a -> Map k a
dropWhileAntitone k -> Bool
p Map k a
r
| Bool
otherwise = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x ((k -> Bool) -> Map k a -> Map k a
forall k a. (k -> Bool) -> Map k a -> Map k a
dropWhileAntitone k -> Bool
p Map k a
l) Map k a
r
spanAntitone :: (k -> Bool) -> Map k a -> (Map k a, Map k a)
spanAntitone :: forall k a. (k -> Bool) -> Map k a -> (Map k a, Map k a)
spanAntitone k -> Bool
p0 Map k a
m = StrictPair (Map k a) (Map k a) -> (Map k a, Map k a)
forall a b. StrictPair a b -> (a, b)
toPair ((k -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
forall {k} {a}.
(k -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> Bool
p0 Map k a
m)
where
go :: (k -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> Bool
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
forall k a. Map k a
Tip
go k -> Bool
p (Bin Size
_ k
kx a
x Map k a
l Map k a
r)
| k -> Bool
p k
kx = let Map k a
u :*: Map k a
v = (k -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> Bool
p Map k a
r in k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
u Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
v
| Bool
otherwise = let Map k a
u :*: Map k a
v = (k -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> Bool
p Map k a
l in Map k a
u Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
v Map k a
r
partition :: (a -> Bool) -> Map k a -> (Map k a,Map k a)
partition :: forall a k. (a -> Bool) -> Map k a -> (Map k a, Map k a)
partition a -> Bool
p Map k a
m
= (k -> a -> Bool) -> Map k a -> (Map k a, Map k a)
forall k a. (k -> a -> Bool) -> Map k a -> (Map k a, Map k a)
partitionWithKey (\k
_ a
x -> a -> Bool
p a
x) Map k a
m
partitionWithKey :: (k -> a -> Bool) -> Map k a -> (Map k a,Map k a)
partitionWithKey :: forall k a. (k -> a -> Bool) -> Map k a -> (Map k a, Map k a)
partitionWithKey k -> a -> Bool
p0 Map k a
t0 = StrictPair (Map k a) (Map k a) -> (Map k a, Map k a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (Map k a) (Map k a) -> (Map k a, Map k a))
-> StrictPair (Map k a) (Map k a) -> (Map k a, Map k a)
forall a b. (a -> b) -> a -> b
$ (k -> a -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
forall {k} {a}.
(k -> a -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> a -> Bool
p0 Map k a
t0
where
go :: (k -> a -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> a -> Bool
_ Map k a
Tip = (Map k a
forall k a. Map k a
Tip Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
forall k a. Map k a
Tip)
go k -> a -> Bool
p t :: Map k a
t@(Bin Size
_ k
kx a
x Map k a
l Map k a
r)
| k -> a -> Bool
p k
kx a
x = (if Map k a
l1 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l Bool -> Bool -> Bool
&& Map k a
r1 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r
then Map k a
t
else k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l1 Map k a
r1) Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l2 Map k a
r2
| Bool
otherwise = Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l1 Map k a
r1 Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*:
(if Map k a
l2 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
l Bool -> Bool -> Bool
&& Map k a
r2 Map k a -> Map k a -> Bool
forall a. a -> a -> Bool
`ptrEq` Map k a
r
then Map k a
t
else k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l2 Map k a
r2)
where
(Map k a
l1 :*: Map k a
l2) = (k -> a -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> a -> Bool
p Map k a
l
(Map k a
r1 :*: Map k a
r2) = (k -> a -> Bool) -> Map k a -> StrictPair (Map k a) (Map k a)
go k -> a -> Bool
p Map k a
r
mapMaybe :: (a -> Maybe b) -> Map k a -> Map k b
mapMaybe :: forall a b k. (a -> Maybe b) -> Map k a -> Map k b
mapMaybe a -> Maybe b
f = (k -> a -> Maybe b) -> Map k a -> Map k b
forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey (\k
_ a
x -> a -> Maybe b
f a
x)
mapMaybeWithKey :: (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey :: forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> a -> Maybe b
_ Map k a
Tip = Map k b
forall k a. Map k a
Tip
mapMaybeWithKey k -> a -> Maybe b
f (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = case k -> a -> Maybe b
f k
kx a
x of
Just b
y -> k -> b -> Map k b -> Map k b -> Map k b
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx b
y ((k -> a -> Maybe b) -> Map k a -> Map k b
forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> a -> Maybe b
f Map k a
l) ((k -> a -> Maybe b) -> Map k a -> Map k b
forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> a -> Maybe b
f Map k a
r)
Maybe b
Nothing -> Map k b -> Map k b -> Map k b
forall k a. Map k a -> Map k a -> Map k a
link2 ((k -> a -> Maybe b) -> Map k a -> Map k b
forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> a -> Maybe b
f Map k a
l) ((k -> a -> Maybe b) -> Map k a -> Map k b
forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> a -> Maybe b
f Map k a
r)
traverseMaybeWithKey :: Applicative f
=> (k -> a -> f (Maybe b)) -> Map k a -> f (Map k b)
traverseMaybeWithKey :: forall (f :: * -> *) k a b.
Applicative f =>
(k -> a -> f (Maybe b)) -> Map k a -> f (Map k b)
traverseMaybeWithKey = (k -> a -> f (Maybe b)) -> Map k a -> f (Map k b)
forall (f :: * -> *) k a b.
Applicative f =>
(k -> a -> f (Maybe b)) -> Map k a -> f (Map k b)
go
where
go :: (k -> t -> f (Maybe a)) -> Map k t -> f (Map k a)
go k -> t -> f (Maybe a)
_ Map k t
Tip = Map k a -> f (Map k a)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Map k a
forall k a. Map k a
Tip
go k -> t -> f (Maybe a)
f (Bin Size
_ k
kx t
x Map k t
Tip Map k t
Tip) = Map k a -> (a -> Map k a) -> Maybe a -> Map k a
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Map k a
forall k a. Map k a
Tip (\a
x' -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx a
x' Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) (Maybe a -> Map k a) -> f (Maybe a) -> f (Map k a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> t -> f (Maybe a)
f k
kx t
x
go k -> t -> f (Maybe a)
f (Bin Size
_ k
kx t
x Map k t
l Map k t
r) = (Map k a -> Maybe a -> Map k a -> Map k a)
-> f (Map k a) -> f (Maybe a) -> f (Map k a) -> f (Map k a)
forall (f :: * -> *) a b c d.
Applicative f =>
(a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 Map k a -> Maybe a -> Map k a -> Map k a
combine ((k -> t -> f (Maybe a)) -> Map k t -> f (Map k a)
go k -> t -> f (Maybe a)
f Map k t
l) (k -> t -> f (Maybe a)
f k
kx t
x) ((k -> t -> f (Maybe a)) -> Map k t -> f (Map k a)
go k -> t -> f (Maybe a)
f Map k t
r)
where
combine :: Map k a -> Maybe a -> Map k a -> Map k a
combine !Map k a
l' Maybe a
mx !Map k a
r' = case Maybe a
mx of
Maybe a
Nothing -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l' Map k a
r'
Just a
x' -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x' Map k a
l' Map k a
r'
mapEither :: (a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEither :: forall a b c k. (a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEither a -> Either b c
f Map k a
m
= (k -> a -> Either b c) -> Map k a -> (Map k b, Map k c)
forall k a b c.
(k -> a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEitherWithKey (\k
_ a
x -> a -> Either b c
f a
x) Map k a
m
mapEitherWithKey :: (k -> a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEitherWithKey :: forall k a b c.
(k -> a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEitherWithKey k -> a -> Either b c
f0 Map k a
t0 = StrictPair (Map k b) (Map k c) -> (Map k b, Map k c)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (Map k b) (Map k c) -> (Map k b, Map k c))
-> StrictPair (Map k b) (Map k c) -> (Map k b, Map k c)
forall a b. (a -> b) -> a -> b
$ (k -> a -> Either b c) -> Map k a -> StrictPair (Map k b) (Map k c)
forall {k} {t} {a} {a}.
(k -> t -> Either a a) -> Map k t -> StrictPair (Map k a) (Map k a)
go k -> a -> Either b c
f0 Map k a
t0
where
go :: (k -> t -> Either a a) -> Map k t -> StrictPair (Map k a) (Map k a)
go k -> t -> Either a a
_ Map k t
Tip = (Map k a
forall k a. Map k a
Tip Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
forall k a. Map k a
Tip)
go k -> t -> Either a a
f (Bin Size
_ k
kx t
x Map k t
l Map k t
r) = case k -> t -> Either a a
f k
kx t
x of
Left a
y -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
y Map k a
l1 Map k a
r1 Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l2 Map k a
r2
Right a
z -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l1 Map k a
r1 Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
z Map k a
l2 Map k a
r2
where
(Map k a
l1 :*: Map k a
l2) = (k -> t -> Either a a) -> Map k t -> StrictPair (Map k a) (Map k a)
go k -> t -> Either a a
f Map k t
l
(Map k a
r1 :*: Map k a
r2) = (k -> t -> Either a a) -> Map k t -> StrictPair (Map k a) (Map k a)
go k -> t -> Either a a
f Map k t
r
map :: (a -> b) -> Map k a -> Map k b
map :: forall a b k. (a -> b) -> Map k a -> Map k b
map a -> b
f = Map k a -> Map k b
go where
go :: Map k a -> Map k b
go Map k a
Tip = Map k b
forall k a. Map k a
Tip
go (Bin Size
sx k
kx a
x Map k a
l Map k a
r) = Size -> k -> b -> Map k b -> Map k b -> Map k b
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx (a -> b
f a
x) (Map k a -> Map k b
go Map k a
l) (Map k a -> Map k b
go Map k a
r)
#ifdef __GLASGOW_HASKELL__
{-# NOINLINE [1] map #-}
{-# RULES
"map/map" forall f g xs . map f (map g xs) = map (f . g) xs
"map/coerce" map coerce = coerce
#-}
#endif
mapWithKey :: (k -> a -> b) -> Map k a -> Map k b
mapWithKey :: forall k a b. (k -> a -> b) -> Map k a -> Map k b
mapWithKey k -> a -> b
_ Map k a
Tip = Map k b
forall k a. Map k a
Tip
mapWithKey k -> a -> b
f (Bin Size
sx k
kx a
x Map k a
l Map k a
r) = Size -> k -> b -> Map k b -> Map k b -> Map k b
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx (k -> a -> b
f k
kx a
x) ((k -> a -> b) -> Map k a -> Map k b
forall k a b. (k -> a -> b) -> Map k a -> Map k b
mapWithKey k -> a -> b
f Map k a
l) ((k -> a -> b) -> Map k a -> Map k b
forall k a b. (k -> a -> b) -> Map k a -> Map k b
mapWithKey k -> a -> b
f Map k a
r)
#ifdef __GLASGOW_HASKELL__
{-# NOINLINE [1] mapWithKey #-}
{-# RULES
"mapWithKey/mapWithKey" forall f g xs . mapWithKey f (mapWithKey g xs) =
mapWithKey (\k a -> f k (g k a)) xs
"mapWithKey/map" forall f g xs . mapWithKey f (map g xs) =
mapWithKey (\k a -> f k (g a)) xs
"map/mapWithKey" forall f g xs . map f (mapWithKey g xs) =
mapWithKey (\k a -> f (g k a)) xs
#-}
#endif
traverseWithKey :: Applicative t => (k -> a -> t b) -> Map k a -> t (Map k b)
traverseWithKey :: forall (t :: * -> *) k a b.
Applicative t =>
(k -> a -> t b) -> Map k a -> t (Map k b)
traverseWithKey k -> a -> t b
f = Map k a -> t (Map k b)
go
where
go :: Map k a -> t (Map k b)
go Map k a
Tip = Map k b -> t (Map k b)
forall a. a -> t a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Map k b
forall k a. Map k a
Tip
go (Bin Size
1 k
k a
v Map k a
_ Map k a
_) = (\b
v' -> Size -> k -> b -> Map k b -> Map k b -> Map k b
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k b
v' Map k b
forall k a. Map k a
Tip Map k b
forall k a. Map k a
Tip) (b -> Map k b) -> t b -> t (Map k b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> a -> t b
f k
k a
v
go (Bin Size
s k
k a
v Map k a
l Map k a
r) = (Map k b -> b -> Map k b -> Map k b)
-> t (Map k b) -> t b -> t (Map k b) -> t (Map k b)
forall (f :: * -> *) a b c d.
Applicative f =>
(a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 ((b -> Map k b -> Map k b -> Map k b)
-> Map k b -> b -> Map k b -> Map k b
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Size -> k -> b -> Map k b -> Map k b -> Map k b
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
s k
k)) (Map k a -> t (Map k b)
go Map k a
l) (k -> a -> t b
f k
k a
v) (Map k a -> t (Map k b)
go Map k a
r)
{-# INLINE traverseWithKey #-}
mapAccum :: (a -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccum :: forall a b c k. (a -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccum a -> b -> (a, c)
f a
a Map k b
m
= (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumWithKey (\a
a' k
_ b
x' -> a -> b -> (a, c)
f a
a' b
x') a
a Map k b
m
mapAccumWithKey :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccumWithKey :: forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumWithKey a -> k -> b -> (a, c)
f a
a Map k b
t
= (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumL a -> k -> b -> (a, c)
f a
a Map k b
t
mapAccumL :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccumL :: forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumL a -> k -> b -> (a, c)
_ a
a Map k b
Tip = (a
a,Map k c
forall k a. Map k a
Tip)
mapAccumL a -> k -> b -> (a, c)
f a
a (Bin Size
sx k
kx b
x Map k b
l Map k b
r) =
let (a
a1,Map k c
l') = (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumL a -> k -> b -> (a, c)
f a
a Map k b
l
(a
a2,c
x') = a -> k -> b -> (a, c)
f a
a1 k
kx b
x
(a
a3,Map k c
r') = (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumL a -> k -> b -> (a, c)
f a
a2 Map k b
r
in (a
a3,Size -> k -> c -> Map k c -> Map k c -> Map k c
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx c
x' Map k c
l' Map k c
r')
mapAccumRWithKey :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccumRWithKey :: forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumRWithKey a -> k -> b -> (a, c)
_ a
a Map k b
Tip = (a
a,Map k c
forall k a. Map k a
Tip)
mapAccumRWithKey a -> k -> b -> (a, c)
f a
a (Bin Size
sx k
kx b
x Map k b
l Map k b
r) =
let (a
a1,Map k c
r') = (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumRWithKey a -> k -> b -> (a, c)
f a
a Map k b
r
(a
a2,c
x') = a -> k -> b -> (a, c)
f a
a1 k
kx b
x
(a
a3,Map k c
l') = (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumRWithKey a -> k -> b -> (a, c)
f a
a2 Map k b
l
in (a
a3,Size -> k -> c -> Map k c -> Map k c -> Map k c
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx c
x' Map k c
l' Map k c
r')
mapKeys :: Ord k2 => (k1->k2) -> Map k1 a -> Map k2 a
mapKeys :: forall k2 k1 a. Ord k2 => (k1 -> k2) -> Map k1 a -> Map k2 a
mapKeys k1 -> k2
f = [(k2, a)] -> Map k2 a
forall k a. Ord k => [(k, a)] -> Map k a
fromList ([(k2, a)] -> Map k2 a)
-> (Map k1 a -> [(k2, a)]) -> Map k1 a -> Map k2 a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (k1 -> a -> [(k2, a)] -> [(k2, a)])
-> [(k2, a)] -> Map k1 a -> [(k2, a)]
forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey (\k1
k a
x [(k2, a)]
xs -> (k1 -> k2
f k1
k, a
x) (k2, a) -> [(k2, a)] -> [(k2, a)]
forall a. a -> [a] -> [a]
: [(k2, a)]
xs) []
#if __GLASGOW_HASKELL__
{-# INLINABLE mapKeys #-}
#endif
mapKeysWith :: Ord k2 => (a -> a -> a) -> (k1->k2) -> Map k1 a -> Map k2 a
mapKeysWith :: forall k2 a k1.
Ord k2 =>
(a -> a -> a) -> (k1 -> k2) -> Map k1 a -> Map k2 a
mapKeysWith a -> a -> a
c k1 -> k2
f = (a -> a -> a) -> [(k2, a)] -> Map k2 a
forall k a. Ord k => (a -> a -> a) -> [(k, a)] -> Map k a
fromListWith a -> a -> a
c ([(k2, a)] -> Map k2 a)
-> (Map k1 a -> [(k2, a)]) -> Map k1 a -> Map k2 a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (k1 -> a -> [(k2, a)] -> [(k2, a)])
-> [(k2, a)] -> Map k1 a -> [(k2, a)]
forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey (\k1
k a
x [(k2, a)]
xs -> (k1 -> k2
f k1
k, a
x) (k2, a) -> [(k2, a)] -> [(k2, a)]
forall a. a -> [a] -> [a]
: [(k2, a)]
xs) []
#if __GLASGOW_HASKELL__
{-# INLINABLE mapKeysWith #-}
#endif
mapKeysMonotonic :: (k1->k2) -> Map k1 a -> Map k2 a
mapKeysMonotonic :: forall k1 k2 a. (k1 -> k2) -> Map k1 a -> Map k2 a
mapKeysMonotonic k1 -> k2
_ Map k1 a
Tip = Map k2 a
forall k a. Map k a
Tip
mapKeysMonotonic k1 -> k2
f (Bin Size
sz k1
k a
x Map k1 a
l Map k1 a
r) =
Size -> k2 -> a -> Map k2 a -> Map k2 a -> Map k2 a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz (k1 -> k2
f k1
k) a
x ((k1 -> k2) -> Map k1 a -> Map k2 a
forall k1 k2 a. (k1 -> k2) -> Map k1 a -> Map k2 a
mapKeysMonotonic k1 -> k2
f Map k1 a
l) ((k1 -> k2) -> Map k1 a -> Map k2 a
forall k1 k2 a. (k1 -> k2) -> Map k1 a -> Map k2 a
mapKeysMonotonic k1 -> k2
f Map k1 a
r)
foldr :: (a -> b -> b) -> b -> Map k a -> b
foldr :: forall a b k. (a -> b -> b) -> b -> Map k a -> b
foldr a -> b -> b
f b
z = b -> Map k a -> b
go b
z
where
go :: b -> Map k a -> b
go b
z' Map k a
Tip = b
z'
go b
z' (Bin Size
_ k
_ a
x Map k a
l Map k a
r) = b -> Map k a -> b
go (a -> b -> b
f a
x (b -> Map k a -> b
go b
z' Map k a
r)) Map k a
l
{-# INLINE foldr #-}
foldr' :: (a -> b -> b) -> b -> Map k a -> b
foldr' :: forall a b k. (a -> b -> b) -> b -> Map k a -> b
foldr' a -> b -> b
f b
z = b -> Map k a -> b
go b
z
where
go :: b -> Map k a -> b
go !b
z' Map k a
Tip = b
z'
go b
z' (Bin Size
_ k
_ a
x Map k a
l Map k a
r) = b -> Map k a -> b
go (a -> b -> b
f a
x (b -> b) -> b -> b
forall a b. (a -> b) -> a -> b
$! b -> Map k a -> b
go b
z' Map k a
r) Map k a
l
{-# INLINE foldr' #-}
foldl :: (a -> b -> a) -> a -> Map k b -> a
foldl :: forall a b k. (a -> b -> a) -> a -> Map k b -> a
foldl a -> b -> a
f a
z = a -> Map k b -> a
go a
z
where
go :: a -> Map k b -> a
go a
z' Map k b
Tip = a
z'
go a
z' (Bin Size
_ k
_ b
x Map k b
l Map k b
r) = a -> Map k b -> a
go (a -> b -> a
f (a -> Map k b -> a
go a
z' Map k b
l) b
x) Map k b
r
{-# INLINE foldl #-}
foldl' :: (a -> b -> a) -> a -> Map k b -> a
foldl' :: forall a b k. (a -> b -> a) -> a -> Map k b -> a
foldl' a -> b -> a
f a
z = a -> Map k b -> a
go a
z
where
go :: a -> Map k b -> a
go !a
z' Map k b
Tip = a
z'
go a
z' (Bin Size
_ k
_ b
x Map k b
l Map k b
r) =
let !z'' :: a
z'' = a -> Map k b -> a
go a
z' Map k b
l
in a -> Map k b -> a
go (a -> b -> a
f a
z'' b
x) Map k b
r
{-# INLINE foldl' #-}
foldrWithKey :: (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey :: forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey k -> a -> b -> b
f b
z = b -> Map k a -> b
go b
z
where
go :: b -> Map k a -> b
go b
z' Map k a
Tip = b
z'
go b
z' (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = b -> Map k a -> b
go (k -> a -> b -> b
f k
kx a
x (b -> Map k a -> b
go b
z' Map k a
r)) Map k a
l
{-# INLINE foldrWithKey #-}
foldrWithKey' :: (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey' :: forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey' k -> a -> b -> b
f b
z = b -> Map k a -> b
go b
z
where
go :: b -> Map k a -> b
go !b
z' Map k a
Tip = b
z'
go b
z' (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = b -> Map k a -> b
go (k -> a -> b -> b
f k
kx a
x (b -> b) -> b -> b
forall a b. (a -> b) -> a -> b
$! b -> Map k a -> b
go b
z' Map k a
r) Map k a
l
{-# INLINE foldrWithKey' #-}
foldlWithKey :: (a -> k -> b -> a) -> a -> Map k b -> a
foldlWithKey :: forall a k b. (a -> k -> b -> a) -> a -> Map k b -> a
foldlWithKey a -> k -> b -> a
f a
z = a -> Map k b -> a
go a
z
where
go :: a -> Map k b -> a
go a
z' Map k b
Tip = a
z'
go a
z' (Bin Size
_ k
kx b
x Map k b
l Map k b
r) = a -> Map k b -> a
go (a -> k -> b -> a
f (a -> Map k b -> a
go a
z' Map k b
l) k
kx b
x) Map k b
r
{-# INLINE foldlWithKey #-}
foldlWithKey' :: (a -> k -> b -> a) -> a -> Map k b -> a
foldlWithKey' :: forall a k b. (a -> k -> b -> a) -> a -> Map k b -> a
foldlWithKey' a -> k -> b -> a
f a
z = a -> Map k b -> a
go a
z
where
go :: a -> Map k b -> a
go !a
z' Map k b
Tip = a
z'
go a
z' (Bin Size
_ k
kx b
x Map k b
l Map k b
r) =
let !z'' :: a
z'' = a -> Map k b -> a
go a
z' Map k b
l
in a -> Map k b -> a
go (a -> k -> b -> a
f a
z'' k
kx b
x) Map k b
r
{-# INLINE foldlWithKey' #-}
foldMapWithKey :: Monoid m => (k -> a -> m) -> Map k a -> m
foldMapWithKey :: forall m k a. Monoid m => (k -> a -> m) -> Map k a -> m
foldMapWithKey k -> a -> m
f = Map k a -> m
go
where
go :: Map k a -> m
go Map k a
Tip = m
forall a. Monoid a => a
mempty
go (Bin Size
1 k
k a
v Map k a
_ Map k a
_) = k -> a -> m
f k
k a
v
go (Bin Size
_ k
k a
v Map k a
l Map k a
r) = Map k a -> m
go Map k a
l m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` (k -> a -> m
f k
k a
v m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Map k a -> m
go Map k a
r)
{-# INLINE foldMapWithKey #-}
elems :: Map k a -> [a]
elems :: forall k a. Map k a -> [a]
elems = (a -> [a] -> [a]) -> [a] -> Map k a -> [a]
forall a b k. (a -> b -> b) -> b -> Map k a -> b
foldr (:) []
keys :: Map k a -> [k]
keys :: forall k a. Map k a -> [k]
keys = (k -> a -> [k] -> [k]) -> [k] -> Map k a -> [k]
forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey (\k
k a
_ [k]
ks -> k
k k -> [k] -> [k]
forall a. a -> [a] -> [a]
: [k]
ks) []
assocs :: Map k a -> [(k,a)]
assocs :: forall k a. Map k a -> [(k, a)]
assocs Map k a
m
= Map k a -> [(k, a)]
forall k a. Map k a -> [(k, a)]
toAscList Map k a
m
keysSet :: Map k a -> Set.Set k
keysSet :: forall k a. Map k a -> Set k
keysSet Map k a
Tip = Set k
forall a. Set a
Set.Tip
keysSet (Bin Size
sz k
kx a
_ Map k a
l Map k a
r) = Size -> k -> Set k -> Set k -> Set k
forall a. Size -> a -> Set a -> Set a -> Set a
Set.Bin Size
sz k
kx (Map k a -> Set k
forall k a. Map k a -> Set k
keysSet Map k a
l) (Map k a -> Set k
forall k a. Map k a -> Set k
keysSet Map k a
r)
argSet :: Map k a -> Set.Set (Arg k a)
argSet :: forall k a. Map k a -> Set (Arg k a)
argSet Map k a
Tip = Set (Arg k a)
forall a. Set a
Set.Tip
argSet (Bin Size
sz k
kx a
x Map k a
l Map k a
r) = Size -> Arg k a -> Set (Arg k a) -> Set (Arg k a) -> Set (Arg k a)
forall a. Size -> a -> Set a -> Set a -> Set a
Set.Bin Size
sz (k -> a -> Arg k a
forall a b. a -> b -> Arg a b
Arg k
kx a
x) (Map k a -> Set (Arg k a)
forall k a. Map k a -> Set (Arg k a)
argSet Map k a
l) (Map k a -> Set (Arg k a)
forall k a. Map k a -> Set (Arg k a)
argSet Map k a
r)
fromSet :: (k -> a) -> Set.Set k -> Map k a
fromSet :: forall k a. (k -> a) -> Set k -> Map k a
fromSet k -> a
_ Set k
Set.Tip = Map k a
forall k a. Map k a
Tip
fromSet k -> a
f (Set.Bin Size
sz k
x Set k
l Set k
r) = Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
x (k -> a
f k
x) ((k -> a) -> Set k -> Map k a
forall k a. (k -> a) -> Set k -> Map k a
fromSet k -> a
f Set k
l) ((k -> a) -> Set k -> Map k a
forall k a. (k -> a) -> Set k -> Map k a
fromSet k -> a
f Set k
r)
fromArgSet :: Set.Set (Arg k a) -> Map k a
fromArgSet :: forall k a. Set (Arg k a) -> Map k a
fromArgSet Set (Arg k a)
Set.Tip = Map k a
forall k a. Map k a
Tip
fromArgSet (Set.Bin Size
sz (Arg k
x a
v) Set (Arg k a)
l Set (Arg k a)
r) = Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
x a
v (Set (Arg k a) -> Map k a
forall k a. Set (Arg k a) -> Map k a
fromArgSet Set (Arg k a)
l) (Set (Arg k a) -> Map k a
forall k a. Set (Arg k a) -> Map k a
fromArgSet Set (Arg k a)
r)
#ifdef __GLASGOW_HASKELL__
instance (Ord k) => GHCExts.IsList (Map k v) where
type Item (Map k v) = (k,v)
fromList :: [Item (Map k v)] -> Map k v
fromList = [(k, v)] -> Map k v
[Item (Map k v)] -> Map k v
forall k a. Ord k => [(k, a)] -> Map k a
fromList
toList :: Map k v -> [Item (Map k v)]
toList = Map k v -> [(k, v)]
Map k v -> [Item (Map k v)]
forall k a. Map k a -> [(k, a)]
toList
#endif
fromList :: Ord k => [(k,a)] -> Map k a
fromList :: forall k a. Ord k => [(k, a)] -> Map k a
fromList [] = Map k a
forall k a. Map k a
Tip
fromList [(k
kx, a
x)] = Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip
fromList ((k
kx0, a
x0) : [(k, a)]
xs0) | k -> [(k, a)] -> Bool
forall {a} {b}. Ord a => a -> [(a, b)] -> Bool
not_ordered k
kx0 [(k, a)]
xs0 = Map k a -> [(k, a)] -> Map k a
forall {t :: * -> *} {k} {a}.
(Foldable t, Ord k) =>
Map k a -> t (k, a) -> Map k a
fromList' (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx0 a
x0 Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) [(k, a)]
xs0
| Bool
otherwise = Size -> Map k a -> [(k, a)] -> Map k a
forall {k} {t} {a}.
(Ord k, Num t, Bits t) =>
t -> Map k a -> [(k, a)] -> Map k a
go (Size
1::Int) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx0 a
x0 Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) [(k, a)]
xs0
where
not_ordered :: a -> [(a, b)] -> Bool
not_ordered a
_ [] = Bool
False
not_ordered a
kx ((a
ky,b
_) : [(a, b)]
_) = a
kx a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
ky
{-# INLINE not_ordered #-}
fromList' :: Map k a -> t (k, a) -> Map k a
fromList' Map k a
t0 t (k, a)
xs = (Map k a -> (k, a) -> Map k a) -> Map k a -> t (k, a) -> Map k a
forall b a. (b -> a -> b) -> b -> t a -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' Map k a -> (k, a) -> Map k a
forall {k} {a}. Ord k => Map k a -> (k, a) -> Map k a
ins Map k a
t0 t (k, a)
xs
where ins :: Map k a -> (k, a) -> Map k a
ins Map k a
t (k
k,a
x) = k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> a -> Map k a -> Map k a
insert k
k a
x Map k a
t
go :: t -> Map k a -> [(k, a)] -> Map k a
go !t
_ Map k a
t [] = Map k a
t
go t
_ Map k a
t [(k
kx, a
x)] = k -> a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a
insertMax k
kx a
x Map k a
t
go t
s Map k a
l xs :: [(k, a)]
xs@((k
kx, a
x) : [(k, a)]
xss) | k -> [(k, a)] -> Bool
forall {a} {b}. Ord a => a -> [(a, b)] -> Bool
not_ordered k
kx [(k, a)]
xss = Map k a -> [(k, a)] -> Map k a
forall {t :: * -> *} {k} {a}.
(Foldable t, Ord k) =>
Map k a -> t (k, a) -> Map k a
fromList' Map k a
l [(k, a)]
xs
| Bool
otherwise = case t -> [(k, a)] -> (Map k a, [(k, a)], [(k, a)])
forall {t} {a} {b}.
(Num t, Ord a, Bits t) =>
t -> [(a, b)] -> (Map a b, [(a, b)], [(a, b)])
create t
s [(k, a)]
xss of
(Map k a
r, [(k, a)]
ys, []) -> t -> Map k a -> [(k, a)] -> Map k a
go (t
s t -> Size -> t
forall a. Bits a => a -> Size -> a
`shiftL` Size
1) (k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
r) [(k, a)]
ys
(Map k a
r, [(k, a)]
_, [(k, a)]
ys) -> Map k a -> [(k, a)] -> Map k a
forall {t :: * -> *} {k} {a}.
(Foldable t, Ord k) =>
Map k a -> t (k, a) -> Map k a
fromList' (k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
r) [(k, a)]
ys
create :: t -> [(a, b)] -> (Map a b, [(a, b)], [(a, b)])
create !t
_ [] = (Map a b
forall k a. Map k a
Tip, [], [])
create t
s xs :: [(a, b)]
xs@((a, b)
xp : [(a, b)]
xss)
| t
s t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== t
1 = case (a, b)
xp of (a
kx, b
x) | a -> [(a, b)] -> Bool
forall {a} {b}. Ord a => a -> [(a, b)] -> Bool
not_ordered a
kx [(a, b)]
xss -> (Size -> a -> b -> Map a b -> Map a b -> Map a b
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 a
kx b
x Map a b
forall k a. Map k a
Tip Map a b
forall k a. Map k a
Tip, [], [(a, b)]
xss)
| Bool
otherwise -> (Size -> a -> b -> Map a b -> Map a b -> Map a b
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 a
kx b
x Map a b
forall k a. Map k a
Tip Map a b
forall k a. Map k a
Tip, [(a, b)]
xss, [])
| Bool
otherwise = case t -> [(a, b)] -> (Map a b, [(a, b)], [(a, b)])
create (t
s t -> Size -> t
forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [(a, b)]
xs of
res :: (Map a b, [(a, b)], [(a, b)])
res@(Map a b
_, [], [(a, b)]
_) -> (Map a b, [(a, b)], [(a, b)])
res
(Map a b
l, [(a
ky, b
y)], [(a, b)]
zs) -> (a -> b -> Map a b -> Map a b
forall k a. k -> a -> Map k a -> Map k a
insertMax a
ky b
y Map a b
l, [], [(a, b)]
zs)
(Map a b
l, ys :: [(a, b)]
ys@((a
ky, b
y):[(a, b)]
yss), [(a, b)]
_) | a -> [(a, b)] -> Bool
forall {a} {b}. Ord a => a -> [(a, b)] -> Bool
not_ordered a
ky [(a, b)]
yss -> (Map a b
l, [], [(a, b)]
ys)
| Bool
otherwise -> case t -> [(a, b)] -> (Map a b, [(a, b)], [(a, b)])
create (t
s t -> Size -> t
forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [(a, b)]
yss of
(Map a b
r, [(a, b)]
zs, [(a, b)]
ws) -> (a -> b -> Map a b -> Map a b -> Map a b
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link a
ky b
y Map a b
l Map a b
r, [(a, b)]
zs, [(a, b)]
ws)
#if __GLASGOW_HASKELL__
{-# INLINABLE fromList #-}
#endif
fromListWith :: Ord k => (a -> a -> a) -> [(k,a)] -> Map k a
fromListWith :: forall k a. Ord k => (a -> a -> a) -> [(k, a)] -> Map k a
fromListWith a -> a -> a
f [(k, a)]
xs
= (k -> a -> a -> a) -> [(k, a)] -> Map k a
forall k a. Ord k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromListWithKey (\k
_ a
x a
y -> a -> a -> a
f a
x a
y) [(k, a)]
xs
#if __GLASGOW_HASKELL__
{-# INLINABLE fromListWith #-}
#endif
fromListWithKey :: Ord k => (k -> a -> a -> a) -> [(k,a)] -> Map k a
fromListWithKey :: forall k a. Ord k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromListWithKey k -> a -> a -> a
f [(k, a)]
xs
= (Map k a -> (k, a) -> Map k a) -> Map k a -> [(k, a)] -> Map k a
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' Map k a -> (k, a) -> Map k a
ins Map k a
forall k a. Map k a
empty [(k, a)]
xs
where
ins :: Map k a -> (k, a) -> Map k a
ins Map k a
t (k
k,a
x) = (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey k -> a -> a -> a
f k
k a
x Map k a
t
#if __GLASGOW_HASKELL__
{-# INLINABLE fromListWithKey #-}
#endif
toList :: Map k a -> [(k,a)]
toList :: forall k a. Map k a -> [(k, a)]
toList = Map k a -> [(k, a)]
forall k a. Map k a -> [(k, a)]
toAscList
toAscList :: Map k a -> [(k,a)]
toAscList :: forall k a. Map k a -> [(k, a)]
toAscList = (k -> a -> [(k, a)] -> [(k, a)]) -> [(k, a)] -> Map k a -> [(k, a)]
forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey (\k
k a
x [(k, a)]
xs -> (k
k,a
x)(k, a) -> [(k, a)] -> [(k, a)]
forall a. a -> [a] -> [a]
:[(k, a)]
xs) []
toDescList :: Map k a -> [(k,a)]
toDescList :: forall k a. Map k a -> [(k, a)]
toDescList = ([(k, a)] -> k -> a -> [(k, a)]) -> [(k, a)] -> Map k a -> [(k, a)]
forall a k b. (a -> k -> b -> a) -> a -> Map k b -> a
foldlWithKey (\[(k, a)]
xs k
k a
x -> (k
k,a
x)(k, a) -> [(k, a)] -> [(k, a)]
forall a. a -> [a] -> [a]
:[(k, a)]
xs) []
#if __GLASGOW_HASKELL__
foldrFB :: (k -> a -> b -> b) -> b -> Map k a -> b
foldrFB :: forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrFB = (k -> a -> b -> b) -> b -> Map k a -> b
forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey
{-# INLINE[0] foldrFB #-}
foldlFB :: (a -> k -> b -> a) -> a -> Map k b -> a
foldlFB :: forall a k b. (a -> k -> b -> a) -> a -> Map k b -> a
foldlFB = (a -> k -> b -> a) -> a -> Map k b -> a
forall a k b. (a -> k -> b -> a) -> a -> Map k b -> a
foldlWithKey
{-# INLINE[0] foldlFB #-}
{-# INLINE assocs #-}
{-# INLINE toList #-}
{-# NOINLINE[0] elems #-}
{-# NOINLINE[0] keys #-}
{-# NOINLINE[0] toAscList #-}
{-# NOINLINE[0] toDescList #-}
{-# RULES "Map.elems" [~1] forall m . elems m = build (\c n -> foldrFB (\_ x xs -> c x xs) n m) #-}
{-# RULES "Map.elemsBack" [1] foldrFB (\_ x xs -> x : xs) [] = elems #-}
{-# RULES "Map.keys" [~1] forall m . keys m = build (\c n -> foldrFB (\k _ xs -> c k xs) n m) #-}
{-# RULES "Map.keysBack" [1] foldrFB (\k _ xs -> k : xs) [] = keys #-}
{-# RULES "Map.toAscList" [~1] forall m . toAscList m = build (\c n -> foldrFB (\k x xs -> c (k,x) xs) n m) #-}
{-# RULES "Map.toAscListBack" [1] foldrFB (\k x xs -> (k, x) : xs) [] = toAscList #-}
{-# RULES "Map.toDescList" [~1] forall m . toDescList m = build (\c n -> foldlFB (\xs k x -> c (k,x) xs) n m) #-}
{-# RULES "Map.toDescListBack" [1] foldlFB (\xs k x -> (k, x) : xs) [] = toDescList #-}
#endif
fromAscList :: Eq k => [(k,a)] -> Map k a
fromAscList :: forall k a. Eq k => [(k, a)] -> Map k a
fromAscList [(k, a)]
xs
= [(k, a)] -> Map k a
forall k a. [(k, a)] -> Map k a
fromDistinctAscList ([(k, a)] -> [(k, a)]
forall {a} {b}. Eq a => [(a, b)] -> [(a, b)]
combineEq [(k, a)]
xs)
where
combineEq :: [(a, b)] -> [(a, b)]
combineEq [(a, b)]
xs'
= case [(a, b)]
xs' of
[] -> []
[(a, b)
x] -> [(a, b)
x]
((a, b)
x:[(a, b)]
xx) -> (a, b) -> [(a, b)] -> [(a, b)]
forall {a} {b}. Eq a => (a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a, b)
x [(a, b)]
xx
combineEq' :: (a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a, b)
z [] = [(a, b)
z]
combineEq' z :: (a, b)
z@(a
kz,b
_) (x :: (a, b)
x@(a
kx,b
xx):[(a, b)]
xs')
| a
kxa -> a -> Bool
forall a. Eq a => a -> a -> Bool
==a
kz = (a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a
kx,b
xx) [(a, b)]
xs'
| Bool
otherwise = (a, b)
z(a, b) -> [(a, b)] -> [(a, b)]
forall a. a -> [a] -> [a]
:(a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a, b)
x [(a, b)]
xs'
#if __GLASGOW_HASKELL__
{-# INLINABLE fromAscList #-}
#endif
fromDescList :: Eq k => [(k,a)] -> Map k a
fromDescList :: forall k a. Eq k => [(k, a)] -> Map k a
fromDescList [(k, a)]
xs = [(k, a)] -> Map k a
forall k a. [(k, a)] -> Map k a
fromDistinctDescList ([(k, a)] -> [(k, a)]
forall {a} {b}. Eq a => [(a, b)] -> [(a, b)]
combineEq [(k, a)]
xs)
where
combineEq :: [(a, b)] -> [(a, b)]
combineEq [(a, b)]
xs'
= case [(a, b)]
xs' of
[] -> []
[(a, b)
x] -> [(a, b)
x]
((a, b)
x:[(a, b)]
xx) -> (a, b) -> [(a, b)] -> [(a, b)]
forall {a} {b}. Eq a => (a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a, b)
x [(a, b)]
xx
combineEq' :: (a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a, b)
z [] = [(a, b)
z]
combineEq' z :: (a, b)
z@(a
kz,b
_) (x :: (a, b)
x@(a
kx,b
xx):[(a, b)]
xs')
| a
kxa -> a -> Bool
forall a. Eq a => a -> a -> Bool
==a
kz = (a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a
kx,b
xx) [(a, b)]
xs'
| Bool
otherwise = (a, b)
z(a, b) -> [(a, b)] -> [(a, b)]
forall a. a -> [a] -> [a]
:(a, b) -> [(a, b)] -> [(a, b)]
combineEq' (a, b)
x [(a, b)]
xs'
#if __GLASGOW_HASKELL__
{-# INLINABLE fromDescList #-}
#endif
fromAscListWith :: Eq k => (a -> a -> a) -> [(k,a)] -> Map k a
fromAscListWith :: forall k a. Eq k => (a -> a -> a) -> [(k, a)] -> Map k a
fromAscListWith a -> a -> a
f [(k, a)]
xs
= (k -> a -> a -> a) -> [(k, a)] -> Map k a
forall k a. Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromAscListWithKey (\k
_ a
x a
y -> a -> a -> a
f a
x a
y) [(k, a)]
xs
#if __GLASGOW_HASKELL__
{-# INLINABLE fromAscListWith #-}
#endif
fromDescListWith :: Eq k => (a -> a -> a) -> [(k,a)] -> Map k a
fromDescListWith :: forall k a. Eq k => (a -> a -> a) -> [(k, a)] -> Map k a
fromDescListWith a -> a -> a
f [(k, a)]
xs
= (k -> a -> a -> a) -> [(k, a)] -> Map k a
forall k a. Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromDescListWithKey (\k
_ a
x a
y -> a -> a -> a
f a
x a
y) [(k, a)]
xs
#if __GLASGOW_HASKELL__
{-# INLINABLE fromDescListWith #-}
#endif
fromAscListWithKey :: Eq k => (k -> a -> a -> a) -> [(k,a)] -> Map k a
fromAscListWithKey :: forall k a. Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromAscListWithKey k -> a -> a -> a
f [(k, a)]
xs
= [(k, a)] -> Map k a
forall k a. [(k, a)] -> Map k a
fromDistinctAscList ((k -> a -> a -> a) -> [(k, a)] -> [(k, a)]
combineEq k -> a -> a -> a
f [(k, a)]
xs)
where
combineEq :: (k -> a -> a -> a) -> [(k, a)] -> [(k, a)]
combineEq k -> a -> a -> a
_ [(k, a)]
xs'
= case [(k, a)]
xs' of
[] -> []
[(k, a)
x] -> [(k, a)
x]
((k, a)
x:[(k, a)]
xx) -> (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
x [(k, a)]
xx
combineEq' :: (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
z [] = [(k, a)
z]
combineEq' z :: (k, a)
z@(k
kz,a
zz) (x :: (k, a)
x@(k
kx,a
xx):[(k, a)]
xs')
| k
kxk -> k -> Bool
forall a. Eq a => a -> a -> Bool
==k
kz = let yy :: a
yy = k -> a -> a -> a
f k
kx a
xx a
zz in (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k
kx,a
yy) [(k, a)]
xs'
| Bool
otherwise = (k, a)
z(k, a) -> [(k, a)] -> [(k, a)]
forall a. a -> [a] -> [a]
:(k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
x [(k, a)]
xs'
#if __GLASGOW_HASKELL__
{-# INLINABLE fromAscListWithKey #-}
#endif
fromDescListWithKey :: Eq k => (k -> a -> a -> a) -> [(k,a)] -> Map k a
fromDescListWithKey :: forall k a. Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromDescListWithKey k -> a -> a -> a
f [(k, a)]
xs
= [(k, a)] -> Map k a
forall k a. [(k, a)] -> Map k a
fromDistinctDescList ((k -> a -> a -> a) -> [(k, a)] -> [(k, a)]
combineEq k -> a -> a -> a
f [(k, a)]
xs)
where
combineEq :: (k -> a -> a -> a) -> [(k, a)] -> [(k, a)]
combineEq k -> a -> a -> a
_ [(k, a)]
xs'
= case [(k, a)]
xs' of
[] -> []
[(k, a)
x] -> [(k, a)
x]
((k, a)
x:[(k, a)]
xx) -> (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
x [(k, a)]
xx
combineEq' :: (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
z [] = [(k, a)
z]
combineEq' z :: (k, a)
z@(k
kz,a
zz) (x :: (k, a)
x@(k
kx,a
xx):[(k, a)]
xs')
| k
kxk -> k -> Bool
forall a. Eq a => a -> a -> Bool
==k
kz = let yy :: a
yy = k -> a -> a -> a
f k
kx a
xx a
zz in (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k
kx,a
yy) [(k, a)]
xs'
| Bool
otherwise = (k, a)
z(k, a) -> [(k, a)] -> [(k, a)]
forall a. a -> [a] -> [a]
:(k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
x [(k, a)]
xs'
#if __GLASGOW_HASKELL__
{-# INLINABLE fromDescListWithKey #-}
#endif
fromDistinctAscList :: [(k,a)] -> Map k a
fromDistinctAscList :: forall k a. [(k, a)] -> Map k a
fromDistinctAscList = FromDistinctMonoState k a -> Map k a
forall k a. FromDistinctMonoState k a -> Map k a
fromDistinctAscList_linkAll (FromDistinctMonoState k a -> Map k a)
-> ([(k, a)] -> FromDistinctMonoState k a) -> [(k, a)] -> Map k a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (FromDistinctMonoState k a -> (k, a) -> FromDistinctMonoState k a)
-> FromDistinctMonoState k a
-> [(k, a)]
-> FromDistinctMonoState k a
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' FromDistinctMonoState k a -> (k, a) -> FromDistinctMonoState k a
forall k a.
FromDistinctMonoState k a -> (k, a) -> FromDistinctMonoState k a
next (Stack k a -> FromDistinctMonoState k a
forall k a. Stack k a -> FromDistinctMonoState k a
State0 Stack k a
forall k a. Stack k a
Nada)
where
next :: FromDistinctMonoState k a -> (k,a) -> FromDistinctMonoState k a
next :: forall k a.
FromDistinctMonoState k a -> (k, a) -> FromDistinctMonoState k a
next (State0 Stack k a
stk) (!k
kx, a
x) = Map k a -> Stack k a -> FromDistinctMonoState k a
forall k a. Map k a -> Stack k a -> FromDistinctMonoState k a
fromDistinctAscList_linkTop (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) Stack k a
stk
next (State1 Map k a
l Stack k a
stk) (k
kx, a
x) = Stack k a -> FromDistinctMonoState k a
forall k a. Stack k a -> FromDistinctMonoState k a
State0 (k -> a -> Map k a -> Stack k a -> Stack k a
forall k a. k -> a -> Map k a -> Stack k a -> Stack k a
Push k
kx a
x Map k a
l Stack k a
stk)
{-# INLINE fromDistinctAscList #-}
fromDistinctAscList_linkTop :: Map k a -> Stack k a -> FromDistinctMonoState k a
fromDistinctAscList_linkTop :: forall k a. Map k a -> Stack k a -> FromDistinctMonoState k a
fromDistinctAscList_linkTop r :: Map k a
r@(Bin Size
rsz k
_ a
_ Map k a
_ Map k a
_) (Push k
kx a
x l :: Map k a
l@(Bin Size
lsz k
_ a
_ Map k a
_ Map k a
_) Stack k a
stk)
| Size
rsz Size -> Size -> Bool
forall a. Eq a => a -> a -> Bool
== Size
lsz = Map k a -> Stack k a -> FromDistinctMonoState k a
forall k a. Map k a -> Stack k a -> FromDistinctMonoState k a
fromDistinctAscList_linkTop (k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
bin k
kx a
x Map k a
l Map k a
r) Stack k a
stk
fromDistinctAscList_linkTop Map k a
l Stack k a
stk = Map k a -> Stack k a -> FromDistinctMonoState k a
forall k a. Map k a -> Stack k a -> FromDistinctMonoState k a
State1 Map k a
l Stack k a
stk
{-# INLINABLE fromDistinctAscList_linkTop #-}
fromDistinctAscList_linkAll :: FromDistinctMonoState k a -> Map k a
fromDistinctAscList_linkAll :: forall k a. FromDistinctMonoState k a -> Map k a
fromDistinctAscList_linkAll (State0 Stack k a
stk) = (Map k a -> k -> a -> Map k a -> Map k a)
-> Map k a -> Stack k a -> Map k a
forall b k a. (b -> k -> a -> Map k a -> b) -> b -> Stack k a -> b
foldl'Stack (\Map k a
r k
kx a
x Map k a
l -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
r) Map k a
forall k a. Map k a
Tip Stack k a
stk
fromDistinctAscList_linkAll (State1 Map k a
r0 Stack k a
stk) = (Map k a -> k -> a -> Map k a -> Map k a)
-> Map k a -> Stack k a -> Map k a
forall b k a. (b -> k -> a -> Map k a -> b) -> b -> Stack k a -> b
foldl'Stack (\Map k a
r k
kx a
x Map k a
l -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
r) Map k a
r0 Stack k a
stk
{-# INLINABLE fromDistinctAscList_linkAll #-}
fromDistinctDescList :: [(k,a)] -> Map k a
fromDistinctDescList :: forall k a. [(k, a)] -> Map k a
fromDistinctDescList = FromDistinctMonoState k a -> Map k a
forall k a. FromDistinctMonoState k a -> Map k a
fromDistinctDescList_linkAll (FromDistinctMonoState k a -> Map k a)
-> ([(k, a)] -> FromDistinctMonoState k a) -> [(k, a)] -> Map k a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (FromDistinctMonoState k a -> (k, a) -> FromDistinctMonoState k a)
-> FromDistinctMonoState k a
-> [(k, a)]
-> FromDistinctMonoState k a
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' FromDistinctMonoState k a -> (k, a) -> FromDistinctMonoState k a
forall k a.
FromDistinctMonoState k a -> (k, a) -> FromDistinctMonoState k a
next (Stack k a -> FromDistinctMonoState k a
forall k a. Stack k a -> FromDistinctMonoState k a
State0 Stack k a
forall k a. Stack k a
Nada)
where
next :: FromDistinctMonoState k a -> (k,a) -> FromDistinctMonoState k a
next :: forall k a.
FromDistinctMonoState k a -> (k, a) -> FromDistinctMonoState k a
next (State0 Stack k a
stk) (!k
kx, a
x) = Map k a -> Stack k a -> FromDistinctMonoState k a
forall k a. Map k a -> Stack k a -> FromDistinctMonoState k a
fromDistinctDescList_linkTop (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) Stack k a
stk
next (State1 Map k a
r Stack k a
stk) (k
kx, a
x) = Stack k a -> FromDistinctMonoState k a
forall k a. Stack k a -> FromDistinctMonoState k a
State0 (k -> a -> Map k a -> Stack k a -> Stack k a
forall k a. k -> a -> Map k a -> Stack k a -> Stack k a
Push k
kx a
x Map k a
r Stack k a
stk)
{-# INLINE fromDistinctDescList #-}
fromDistinctDescList_linkTop :: Map k a -> Stack k a -> FromDistinctMonoState k a
fromDistinctDescList_linkTop :: forall k a. Map k a -> Stack k a -> FromDistinctMonoState k a
fromDistinctDescList_linkTop l :: Map k a
l@(Bin Size
lsz k
_ a
_ Map k a
_ Map k a
_) (Push k
kx a
x r :: Map k a
r@(Bin Size
rsz k
_ a
_ Map k a
_ Map k a
_) Stack k a
stk)
| Size
lsz Size -> Size -> Bool
forall a. Eq a => a -> a -> Bool
== Size
rsz = Map k a -> Stack k a -> FromDistinctMonoState k a
forall k a. Map k a -> Stack k a -> FromDistinctMonoState k a
fromDistinctDescList_linkTop (k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
bin k
kx a
x Map k a
l Map k a
r) Stack k a
stk
fromDistinctDescList_linkTop Map k a
r Stack k a
stk = Map k a -> Stack k a -> FromDistinctMonoState k a
forall k a. Map k a -> Stack k a -> FromDistinctMonoState k a
State1 Map k a
r Stack k a
stk
{-# INLINABLE fromDistinctDescList_linkTop #-}
fromDistinctDescList_linkAll :: FromDistinctMonoState k a -> Map k a
fromDistinctDescList_linkAll :: forall k a. FromDistinctMonoState k a -> Map k a
fromDistinctDescList_linkAll (State0 Stack k a
stk) = (Map k a -> k -> a -> Map k a -> Map k a)
-> Map k a -> Stack k a -> Map k a
forall b k a. (b -> k -> a -> Map k a -> b) -> b -> Stack k a -> b
foldl'Stack (\Map k a
l k
kx a
x Map k a
r -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
r) Map k a
forall k a. Map k a
Tip Stack k a
stk
fromDistinctDescList_linkAll (State1 Map k a
l0 Stack k a
stk) = (Map k a -> k -> a -> Map k a -> Map k a)
-> Map k a -> Stack k a -> Map k a
forall b k a. (b -> k -> a -> Map k a -> b) -> b -> Stack k a -> b
foldl'Stack (\Map k a
l k
kx a
x Map k a
r -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
r) Map k a
l0 Stack k a
stk
{-# INLINABLE fromDistinctDescList_linkAll #-}
data FromDistinctMonoState k a
= State0 !(Stack k a)
| State1 !(Map k a) !(Stack k a)
data Stack k a = Push !k a !(Map k a) !(Stack k a) | Nada
foldl'Stack :: (b -> k -> a -> Map k a -> b) -> b -> Stack k a -> b
foldl'Stack :: forall b k a. (b -> k -> a -> Map k a -> b) -> b -> Stack k a -> b
foldl'Stack b -> k -> a -> Map k a -> b
f = b -> Stack k a -> b
go
where
go :: b -> Stack k a -> b
go !b
z Stack k a
Nada = b
z
go b
z (Push k
kx a
x Map k a
t Stack k a
stk) = b -> Stack k a -> b
go (b -> k -> a -> Map k a -> b
f b
z k
kx a
x Map k a
t) Stack k a
stk
{-# INLINE foldl'Stack #-}
split :: Ord k => k -> Map k a -> (Map k a,Map k a)
split :: forall k a. Ord k => k -> Map k a -> (Map k a, Map k a)
split !k
k0 Map k a
t0 = StrictPair (Map k a) (Map k a) -> (Map k a, Map k a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (Map k a) (Map k a) -> (Map k a, Map k a))
-> StrictPair (Map k a) (Map k a) -> (Map k a, Map k a)
forall a b. (a -> b) -> a -> b
$ k -> Map k a -> StrictPair (Map k a) (Map k a)
forall {k} {a}.
Ord k =>
k -> Map k a -> StrictPair (Map k a) (Map k a)
go k
k0 Map k a
t0
where
go :: k -> Map k a -> StrictPair (Map k a) (Map k a)
go k
k Map k a
t =
case Map k a
t of
Map k a
Tip -> Map k a
forall k a. Map k a
Tip Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
forall k a. Map k a
Tip
Bin Size
_ k
kx a
x Map k a
l Map k a
r -> case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> let (Map k a
lt :*: Map k a
gt) = k -> Map k a -> StrictPair (Map k a) (Map k a)
go k
k Map k a
l in Map k a
lt Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
gt Map k a
r
Ordering
GT -> let (Map k a
lt :*: Map k a
gt) = k -> Map k a -> StrictPair (Map k a) (Map k a)
go k
k Map k a
r in k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
lt Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
gt
Ordering
EQ -> (Map k a
l Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
r)
#if __GLASGOW_HASKELL__
{-# INLINABLE split #-}
#endif
splitLookup :: Ord k => k -> Map k a -> (Map k a,Maybe a,Map k a)
splitLookup :: forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k0 Map k a
m = case k -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
go k
k0 Map k a
m of
StrictTriple Map k a
l Maybe a
mv Map k a
r -> (Map k a
l, Maybe a
mv, Map k a
r)
where
go :: Ord k => k -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
go :: forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
go !k
k Map k a
t =
case Map k a
t of
Map k a
Tip -> Map k a
-> Maybe a -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
forall k a. Map k a
Tip Maybe a
forall a. Maybe a
Nothing Map k a
forall k a. Map k a
Tip
Bin Size
_ k
kx a
x Map k a
l Map k a
r -> case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> let StrictTriple Map k a
lt Maybe a
z Map k a
gt = k -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
go k
k Map k a
l
!gt' :: Map k a
gt' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
gt Map k a
r
in Map k a
-> Maybe a -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
lt Maybe a
z Map k a
gt'
Ordering
GT -> let StrictTriple Map k a
lt Maybe a
z Map k a
gt = k -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
go k
k Map k a
r
!lt' :: Map k a
lt' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
lt
in Map k a
-> Maybe a -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
lt' Maybe a
z Map k a
gt
Ordering
EQ -> Map k a
-> Maybe a -> Map k a -> StrictTriple (Map k a) (Maybe a) (Map k a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
l (a -> Maybe a
forall a. a -> Maybe a
Just a
x) Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE splitLookup #-}
#endif
splitMember :: Ord k => k -> Map k a -> (Map k a,Bool,Map k a)
splitMember :: forall k a. Ord k => k -> Map k a -> (Map k a, Bool, Map k a)
splitMember k
k0 Map k a
m = case k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
go k
k0 Map k a
m of
StrictTriple Map k a
l Bool
mv Map k a
r -> (Map k a
l, Bool
mv, Map k a
r)
where
go :: Ord k => k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
go :: forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
go !k
k Map k a
t =
case Map k a
t of
Map k a
Tip -> Map k a -> Bool -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
forall k a. Map k a
Tip Bool
False Map k a
forall k a. Map k a
Tip
Bin Size
_ k
kx a
x Map k a
l Map k a
r -> case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> let StrictTriple Map k a
lt Bool
z Map k a
gt = k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
go k
k Map k a
l
!gt' :: Map k a
gt' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
gt Map k a
r
in Map k a -> Bool -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
lt Bool
z Map k a
gt'
Ordering
GT -> let StrictTriple Map k a
lt Bool
z Map k a
gt = k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
forall k a.
Ord k =>
k -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
go k
k Map k a
r
!lt' :: Map k a
lt' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
lt
in Map k a -> Bool -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
lt' Bool
z Map k a
gt
Ordering
EQ -> Map k a -> Bool -> Map k a -> StrictTriple (Map k a) Bool (Map k a)
forall a b c. a -> b -> c -> StrictTriple a b c
StrictTriple Map k a
l Bool
True Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE splitMember #-}
#endif
data StrictTriple a b c = StrictTriple !a !b !c
link :: k -> a -> Map k a -> Map k a -> Map k a
link :: forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
Tip Map k a
r = k -> a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a
insertMin k
kx a
x Map k a
r
link k
kx a
x Map k a
l Map k a
Tip = k -> a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a
insertMax k
kx a
x Map k a
l
link k
kx a
x l :: Map k a
l@(Bin Size
sizeL k
ky a
y Map k a
ly Map k a
ry) r :: Map k a
r@(Bin Size
sizeR k
kz a
z Map k a
lz Map k a
rz)
| Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
sizeL Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
sizeR = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kz a
z (k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
lz) Map k a
rz
| Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
sizeR Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
sizeL = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
ly (k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
ry Map k a
r)
| Bool
otherwise = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
bin k
kx a
x Map k a
l Map k a
r
insertMax,insertMin :: k -> a -> Map k a -> Map k a
insertMax :: forall k a. k -> a -> Map k a -> Map k a
insertMax k
kx a
x Map k a
t
= case Map k a
t of
Map k a
Tip -> k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
Bin Size
_ k
ky a
y Map k a
l Map k a
r
-> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l (k -> a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a
insertMax k
kx a
x Map k a
r)
insertMin :: forall k a. k -> a -> Map k a -> Map k a
insertMin k
kx a
x Map k a
t
= case Map k a
t of
Map k a
Tip -> k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
Bin Size
_ k
ky a
y Map k a
l Map k a
r
-> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y (k -> a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a
insertMin k
kx a
x Map k a
l) Map k a
r
link2 :: Map k a -> Map k a -> Map k a
link2 :: forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
Tip Map k a
r = Map k a
r
link2 Map k a
l Map k a
Tip = Map k a
l
link2 l :: Map k a
l@(Bin Size
sizeL k
kx a
x Map k a
lx Map k a
rx) r :: Map k a
r@(Bin Size
sizeR k
ky a
y Map k a
ly Map k a
ry)
| Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
sizeL Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
sizeR = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y (Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l Map k a
ly) Map k a
ry
| Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
sizeR Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
sizeL = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
lx (Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
rx Map k a
r)
| Bool
otherwise = Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
glue :: Map k a -> Map k a -> Map k a
glue :: forall k a. Map k a -> Map k a -> Map k a
glue Map k a
Tip Map k a
r = Map k a
r
glue Map k a
l Map k a
Tip = Map k a
l
glue l :: Map k a
l@(Bin Size
sl k
kl a
xl Map k a
ll Map k a
lr) r :: Map k a
r@(Bin Size
sr k
kr a
xr Map k a
rl Map k a
rr)
| Size
sl Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
> Size
sr = let !(MaxView k
km a
m Map k a
l') = k -> a -> Map k a -> Map k a -> MaxView k a
forall k a. k -> a -> Map k a -> Map k a -> MaxView k a
maxViewSure k
kl a
xl Map k a
ll Map k a
lr in k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
km a
m Map k a
l' Map k a
r
| Bool
otherwise = let !(MinView k
km a
m Map k a
r') = k -> a -> Map k a -> Map k a -> MinView k a
forall k a. k -> a -> Map k a -> Map k a -> MinView k a
minViewSure k
kr a
xr Map k a
rl Map k a
rr in k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
km a
m Map k a
l Map k a
r'
data MinView k a = MinView !k a !(Map k a)
data MaxView k a = MaxView !k a !(Map k a)
minViewSure :: k -> a -> Map k a -> Map k a -> MinView k a
minViewSure :: forall k a. k -> a -> Map k a -> Map k a -> MinView k a
minViewSure = k -> a -> Map k a -> Map k a -> MinView k a
forall k a. k -> a -> Map k a -> Map k a -> MinView k a
go
where
go :: t -> t -> Map t t -> Map t t -> MinView t t
go t
k t
x Map t t
Tip Map t t
r = t -> t -> Map t t -> MinView t t
forall k a. k -> a -> Map k a -> MinView k a
MinView t
k t
x Map t t
r
go t
k t
x (Bin Size
_ t
kl t
xl Map t t
ll Map t t
lr) Map t t
r =
case t -> t -> Map t t -> Map t t -> MinView t t
go t
kl t
xl Map t t
ll Map t t
lr of
MinView t
km t
xm Map t t
l' -> t -> t -> Map t t -> MinView t t
forall k a. k -> a -> Map k a -> MinView k a
MinView t
km t
xm (t -> t -> Map t t -> Map t t -> Map t t
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR t
k t
x Map t t
l' Map t t
r)
{-# NOINLINE minViewSure #-}
maxViewSure :: k -> a -> Map k a -> Map k a -> MaxView k a
maxViewSure :: forall k a. k -> a -> Map k a -> Map k a -> MaxView k a
maxViewSure = k -> a -> Map k a -> Map k a -> MaxView k a
forall k a. k -> a -> Map k a -> Map k a -> MaxView k a
go
where
go :: t -> t -> Map t t -> Map t t -> MaxView t t
go t
k t
x Map t t
l Map t t
Tip = t -> t -> Map t t -> MaxView t t
forall k a. k -> a -> Map k a -> MaxView k a
MaxView t
k t
x Map t t
l
go t
k t
x Map t t
l (Bin Size
_ t
kr t
xr Map t t
rl Map t t
rr) =
case t -> t -> Map t t -> Map t t -> MaxView t t
go t
kr t
xr Map t t
rl Map t t
rr of
MaxView t
km t
xm Map t t
r' -> t -> t -> Map t t -> MaxView t t
forall k a. k -> a -> Map k a -> MaxView k a
MaxView t
km t
xm (t -> t -> Map t t -> Map t t -> Map t t
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL t
k t
x Map t t
l Map t t
r')
{-# NOINLINE maxViewSure #-}
deleteFindMin :: Map k a -> ((k,a),Map k a)
deleteFindMin :: forall k a. Map k a -> ((k, a), Map k a)
deleteFindMin Map k a
t = case Map k a -> Maybe ((k, a), Map k a)
forall k a. Map k a -> Maybe ((k, a), Map k a)
minViewWithKey Map k a
t of
Maybe ((k, a), Map k a)
Nothing -> ([Char] -> (k, a)
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.deleteFindMin: can not return the minimal element of an empty map", Map k a
forall k a. Map k a
Tip)
Just ((k, a), Map k a)
res -> ((k, a), Map k a)
res
deleteFindMax :: Map k a -> ((k,a),Map k a)
deleteFindMax :: forall k a. Map k a -> ((k, a), Map k a)
deleteFindMax Map k a
t = case Map k a -> Maybe ((k, a), Map k a)
forall k a. Map k a -> Maybe ((k, a), Map k a)
maxViewWithKey Map k a
t of
Maybe ((k, a), Map k a)
Nothing -> ([Char] -> (k, a)
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.deleteFindMax: can not return the maximal element of an empty map", Map k a
forall k a. Map k a
Tip)
Just ((k, a), Map k a)
res -> ((k, a), Map k a)
res
delta,ratio :: Int
delta :: Size
delta = Size
3
ratio :: Size
ratio = Size
2
balance :: k -> a -> Map k a -> Map k a -> Map k a
balance :: forall k a. k -> a -> Map k a -> Map k a -> Map k a
balance k
k a
x Map k a
l Map k a
r = case Map k a
l of
Map k a
Tip -> case Map k a
r of
Map k a
Tip -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip
(Bin Size
_ k
_ a
_ Map k a
Tip Map k a
Tip) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
2 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
r
(Bin Size
_ k
rk a
rx Map k a
Tip rr :: Map k a
rr@(Bin Size
_ k
_ a
_ Map k a
_ Map k a
_)) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
rk a
rx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) Map k a
rr
(Bin Size
_ k
rk a
rx (Bin Size
_ k
rlk a
rlx Map k a
_ Map k a
_) Map k a
Tip) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
rlk a
rlx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
rk a
rx Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip)
(Bin Size
rs k
rk a
rx rl :: Map k a
rl@(Bin Size
rls k
rlk a
rlx Map k a
rll Map k a
rlr) rr :: Map k a
rr@(Bin Size
rrs k
_ a
_ Map k a
_ Map k a
_))
| Size
rls Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
ratioSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
rrs -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
rk a
rx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rls) k
k a
x Map k a
forall k a. Map k a
Tip Map k a
rl) Map k a
rr
| Bool
otherwise -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
rlk a
rlx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
rll) k
k a
x Map k a
forall k a. Map k a
Tip Map k a
rll) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rrsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
rlr) k
rk a
rx Map k a
rlr Map k a
rr)
(Bin Size
ls k
lk a
lx Map k a
ll Map k a
lr) -> case Map k a
r of
Map k a
Tip -> case (Map k a
ll, Map k a
lr) of
(Map k a
Tip, Map k a
Tip) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
2 k
k a
x Map k a
l Map k a
forall k a. Map k a
Tip
(Map k a
Tip, (Bin Size
_ k
lrk a
lrx Map k a
_ Map k a
_)) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
lrk a
lrx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
lk a
lx Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip)
((Bin Size
_ k
_ a
_ Map k a
_ Map k a
_), Map k a
Tip) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
lk a
lx Map k a
ll (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip)
((Bin Size
lls k
_ a
_ Map k a
_ Map k a
_), (Bin Size
lrs k
lrk a
lrx Map k a
lrl Map k a
lrr))
| Size
lrs Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
ratioSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
lls -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
ls) k
lk a
lx Map k a
ll (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lrs) k
k a
x Map k a
lr Map k a
forall k a. Map k a
Tip)
| Bool
otherwise -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
ls) k
lrk a
lrx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
llsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
lrl) k
lk a
lx Map k a
ll Map k a
lrl) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
lrr) k
k a
x Map k a
lrr Map k a
forall k a. Map k a
Tip)
(Bin Size
rs k
rk a
rx Map k a
rl Map k a
rr)
| Size
rs Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
> Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
ls -> case (Map k a
rl, Map k a
rr) of
(Bin Size
rls k
rlk a
rlx Map k a
rll Map k a
rlr, Bin Size
rrs k
_ a
_ Map k a
_ Map k a
_)
| Size
rls Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
ratioSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
rrs -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
rk a
rx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rls) k
k a
x Map k a
l Map k a
rl) Map k a
rr
| Bool
otherwise -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
rlk a
rlx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
rll) k
k a
x Map k a
l Map k a
rll) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rrsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
rlr) k
rk a
rx Map k a
rlr Map k a
rr)
(Map k a
_, Map k a
_) -> [Char] -> Map k a
forall a. HasCallStack => [Char] -> a
error [Char]
"Failure in Data.Map.balance"
| Size
ls Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
> Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
rs -> case (Map k a
ll, Map k a
lr) of
(Bin Size
lls k
_ a
_ Map k a
_ Map k a
_, Bin Size
lrs k
lrk a
lrx Map k a
lrl Map k a
lrr)
| Size
lrs Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
ratioSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
lls -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
lk a
lx Map k a
ll (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lrs) k
k a
x Map k a
lr Map k a
r)
| Bool
otherwise -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
lrk a
lrx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
llsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
lrl) k
lk a
lx Map k a
ll Map k a
lrl) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
lrr) k
k a
x Map k a
lrr Map k a
r)
(Map k a
_, Map k a
_) -> [Char] -> Map k a
forall a. HasCallStack => [Char] -> a
error [Char]
"Failure in Data.Map.balance"
| Bool
otherwise -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
k a
x Map k a
l Map k a
r
{-# NOINLINE balance #-}
balanceL :: k -> a -> Map k a -> Map k a -> Map k a
balanceL :: forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
k a
x Map k a
l Map k a
r = case Map k a
r of
Map k a
Tip -> case Map k a
l of
Map k a
Tip -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip
(Bin Size
_ k
_ a
_ Map k a
Tip Map k a
Tip) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
2 k
k a
x Map k a
l Map k a
forall k a. Map k a
Tip
(Bin Size
_ k
lk a
lx Map k a
Tip (Bin Size
_ k
lrk a
lrx Map k a
_ Map k a
_)) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
lrk a
lrx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
lk a
lx Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip)
(Bin Size
_ k
lk a
lx ll :: Map k a
ll@(Bin Size
_ k
_ a
_ Map k a
_ Map k a
_) Map k a
Tip) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
lk a
lx Map k a
ll (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip)
(Bin Size
ls k
lk a
lx ll :: Map k a
ll@(Bin Size
lls k
_ a
_ Map k a
_ Map k a
_) lr :: Map k a
lr@(Bin Size
lrs k
lrk a
lrx Map k a
lrl Map k a
lrr))
| Size
lrs Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
ratioSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
lls -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
ls) k
lk a
lx Map k a
ll (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lrs) k
k a
x Map k a
lr Map k a
forall k a. Map k a
Tip)
| Bool
otherwise -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
ls) k
lrk a
lrx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
llsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
lrl) k
lk a
lx Map k a
ll Map k a
lrl) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
lrr) k
k a
x Map k a
lrr Map k a
forall k a. Map k a
Tip)
(Bin Size
rs k
_ a
_ Map k a
_ Map k a
_) -> case Map k a
l of
Map k a
Tip -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
k a
x Map k a
forall k a. Map k a
Tip Map k a
r
(Bin Size
ls k
lk a
lx Map k a
ll Map k a
lr)
| Size
ls Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
> Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
rs -> case (Map k a
ll, Map k a
lr) of
(Bin Size
lls k
_ a
_ Map k a
_ Map k a
_, Bin Size
lrs k
lrk a
lrx Map k a
lrl Map k a
lrr)
| Size
lrs Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
ratioSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
lls -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
lk a
lx Map k a
ll (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lrs) k
k a
x Map k a
lr Map k a
r)
| Bool
otherwise -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
lrk a
lrx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
llsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
lrl) k
lk a
lx Map k a
ll Map k a
lrl) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
lrr) k
k a
x Map k a
lrr Map k a
r)
(Map k a
_, Map k a
_) -> [Char] -> Map k a
forall a. HasCallStack => [Char] -> a
error [Char]
"Failure in Data.Map.balanceL"
| Bool
otherwise -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
k a
x Map k a
l Map k a
r
{-# NOINLINE balanceL #-}
balanceR :: k -> a -> Map k a -> Map k a -> Map k a
balanceR :: forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
k a
x Map k a
l Map k a
r = case Map k a
l of
Map k a
Tip -> case Map k a
r of
Map k a
Tip -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip
(Bin Size
_ k
_ a
_ Map k a
Tip Map k a
Tip) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
2 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
r
(Bin Size
_ k
rk a
rx Map k a
Tip rr :: Map k a
rr@(Bin Size
_ k
_ a
_ Map k a
_ Map k a
_)) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
rk a
rx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) Map k a
rr
(Bin Size
_ k
rk a
rx (Bin Size
_ k
rlk a
rlx Map k a
_ Map k a
_) Map k a
Tip) -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
3 k
rlk a
rlx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
rk a
rx Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip)
(Bin Size
rs k
rk a
rx rl :: Map k a
rl@(Bin Size
rls k
rlk a
rlx Map k a
rll Map k a
rlr) rr :: Map k a
rr@(Bin Size
rrs k
_ a
_ Map k a
_ Map k a
_))
| Size
rls Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
ratioSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
rrs -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
rk a
rx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rls) k
k a
x Map k a
forall k a. Map k a
Tip Map k a
rl) Map k a
rr
| Bool
otherwise -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
rlk a
rlx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
rll) k
k a
x Map k a
forall k a. Map k a
Tip Map k a
rll) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rrsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
rlr) k
rk a
rx Map k a
rlr Map k a
rr)
(Bin Size
ls k
_ a
_ Map k a
_ Map k a
_) -> case Map k a
r of
Map k a
Tip -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
ls) k
k a
x Map k a
l Map k a
forall k a. Map k a
Tip
(Bin Size
rs k
rk a
rx Map k a
rl Map k a
rr)
| Size
rs Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
> Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
ls -> case (Map k a
rl, Map k a
rr) of
(Bin Size
rls k
rlk a
rlx Map k a
rll Map k a
rlr, Bin Size
rrs k
_ a
_ Map k a
_ Map k a
_)
| Size
rls Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
ratioSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
rrs -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
rk a
rx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rls) k
k a
x Map k a
l Map k a
rl) Map k a
rr
| Bool
otherwise -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
rlk a
rlx (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
rll) k
k a
x Map k a
l Map k a
rll) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rrsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Map k a -> Size
forall k a. Map k a -> Size
size Map k a
rlr) k
rk a
rx Map k a
rlr Map k a
rr)
(Map k a
_, Map k a
_) -> [Char] -> Map k a
forall a. HasCallStack => [Char] -> a
error [Char]
"Failure in Data.Map.balanceR"
| Bool
otherwise -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) k
k a
x Map k a
l Map k a
r
{-# NOINLINE balanceR #-}
bin :: k -> a -> Map k a -> Map k a -> Map k a
bin :: forall k a. k -> a -> Map k a -> Map k a -> Map k a
bin k
k a
x Map k a
l Map k a
r
= Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin (Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Map k a -> Size
forall k a. Map k a -> Size
size Map k a
r Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Size
1) k
k a
x Map k a
l Map k a
r
{-# INLINE bin #-}
instance (Eq k,Eq a) => Eq (Map k a) where
Map k a
t1 == :: Map k a -> Map k a -> Bool
== Map k a
t2 = (Map k a -> Size
forall k a. Map k a -> Size
size Map k a
t1 Size -> Size -> Bool
forall a. Eq a => a -> a -> Bool
== Map k a -> Size
forall k a. Map k a -> Size
size Map k a
t2) Bool -> Bool -> Bool
&& (Map k a -> [(k, a)]
forall k a. Map k a -> [(k, a)]
toAscList Map k a
t1 [(k, a)] -> [(k, a)] -> Bool
forall a. Eq a => a -> a -> Bool
== Map k a -> [(k, a)]
forall k a. Map k a -> [(k, a)]
toAscList Map k a
t2)
instance (Ord k, Ord v) => Ord (Map k v) where
compare :: Map k v -> Map k v -> Ordering
compare Map k v
m1 Map k v
m2 = [(k, v)] -> [(k, v)] -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Map k v -> [(k, v)]
forall k a. Map k a -> [(k, a)]
toAscList Map k v
m1) (Map k v -> [(k, v)]
forall k a. Map k a -> [(k, a)]
toAscList Map k v
m2)
instance Eq2 Map where
liftEq2 :: forall a b c d.
(a -> b -> Bool) -> (c -> d -> Bool) -> Map a c -> Map b d -> Bool
liftEq2 a -> b -> Bool
eqk c -> d -> Bool
eqv Map a c
m Map b d
n =
Map a c -> Size
forall k a. Map k a -> Size
size Map a c
m Size -> Size -> Bool
forall a. Eq a => a -> a -> Bool
== Map b d -> Size
forall k a. Map k a -> Size
size Map b d
n Bool -> Bool -> Bool
&& ((a, c) -> (b, d) -> Bool) -> [(a, c)] -> [(b, d)] -> Bool
forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
forall (f :: * -> *) a b.
Eq1 f =>
(a -> b -> Bool) -> f a -> f b -> Bool
liftEq ((a -> b -> Bool) -> (c -> d -> Bool) -> (a, c) -> (b, d) -> Bool
forall a b c d.
(a -> b -> Bool) -> (c -> d -> Bool) -> (a, c) -> (b, d) -> Bool
forall (f :: * -> * -> *) a b c d.
Eq2 f =>
(a -> b -> Bool) -> (c -> d -> Bool) -> f a c -> f b d -> Bool
liftEq2 a -> b -> Bool
eqk c -> d -> Bool
eqv) (Map a c -> [(a, c)]
forall k a. Map k a -> [(k, a)]
toList Map a c
m) (Map b d -> [(b, d)]
forall k a. Map k a -> [(k, a)]
toList Map b d
n)
instance Eq k => Eq1 (Map k) where
liftEq :: forall a b. (a -> b -> Bool) -> Map k a -> Map k b -> Bool
liftEq = (k -> k -> Bool) -> (a -> b -> Bool) -> Map k a -> Map k b -> Bool
forall a b c d.
(a -> b -> Bool) -> (c -> d -> Bool) -> Map a c -> Map b d -> Bool
forall (f :: * -> * -> *) a b c d.
Eq2 f =>
(a -> b -> Bool) -> (c -> d -> Bool) -> f a c -> f b d -> Bool
liftEq2 k -> k -> Bool
forall a. Eq a => a -> a -> Bool
(==)
instance Ord2 Map where
liftCompare2 :: forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> Map a c -> Map b d -> Ordering
liftCompare2 a -> b -> Ordering
cmpk c -> d -> Ordering
cmpv Map a c
m Map b d
n =
((a, c) -> (b, d) -> Ordering) -> [(a, c)] -> [(b, d)] -> Ordering
forall a b. (a -> b -> Ordering) -> [a] -> [b] -> Ordering
forall (f :: * -> *) a b.
Ord1 f =>
(a -> b -> Ordering) -> f a -> f b -> Ordering
liftCompare ((a -> b -> Ordering)
-> (c -> d -> Ordering) -> (a, c) -> (b, d) -> Ordering
forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> (a, c) -> (b, d) -> Ordering
forall (f :: * -> * -> *) a b c d.
Ord2 f =>
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> f a c -> f b d -> Ordering
liftCompare2 a -> b -> Ordering
cmpk c -> d -> Ordering
cmpv) (Map a c -> [(a, c)]
forall k a. Map k a -> [(k, a)]
toList Map a c
m) (Map b d -> [(b, d)]
forall k a. Map k a -> [(k, a)]
toList Map b d
n)
instance Ord k => Ord1 (Map k) where
liftCompare :: forall a b. (a -> b -> Ordering) -> Map k a -> Map k b -> Ordering
liftCompare = (k -> k -> Ordering)
-> (a -> b -> Ordering) -> Map k a -> Map k b -> Ordering
forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> Map a c -> Map b d -> Ordering
forall (f :: * -> * -> *) a b c d.
Ord2 f =>
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> f a c -> f b d -> Ordering
liftCompare2 k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare
instance Show2 Map where
liftShowsPrec2 :: forall a b.
(Size -> a -> ShowS)
-> ([a] -> ShowS)
-> (Size -> b -> ShowS)
-> ([b] -> ShowS)
-> Size
-> Map a b
-> ShowS
liftShowsPrec2 Size -> a -> ShowS
spk [a] -> ShowS
slk Size -> b -> ShowS
spv [b] -> ShowS
slv Size
d Map a b
m =
(Size -> [(a, b)] -> ShowS) -> [Char] -> Size -> [(a, b)] -> ShowS
forall a. (Size -> a -> ShowS) -> [Char] -> Size -> a -> ShowS
showsUnaryWith ((Size -> (a, b) -> ShowS)
-> ([(a, b)] -> ShowS) -> Size -> [(a, b)] -> ShowS
forall a.
(Size -> a -> ShowS) -> ([a] -> ShowS) -> Size -> [a] -> ShowS
forall (f :: * -> *) a.
Show1 f =>
(Size -> a -> ShowS) -> ([a] -> ShowS) -> Size -> f a -> ShowS
liftShowsPrec Size -> (a, b) -> ShowS
sp [(a, b)] -> ShowS
sl) [Char]
"fromList" Size
d (Map a b -> [(a, b)]
forall k a. Map k a -> [(k, a)]
toList Map a b
m)
where
sp :: Size -> (a, b) -> ShowS
sp = (Size -> a -> ShowS)
-> ([a] -> ShowS)
-> (Size -> b -> ShowS)
-> ([b] -> ShowS)
-> Size
-> (a, b)
-> ShowS
forall a b.
(Size -> a -> ShowS)
-> ([a] -> ShowS)
-> (Size -> b -> ShowS)
-> ([b] -> ShowS)
-> Size
-> (a, b)
-> ShowS
forall (f :: * -> * -> *) a b.
Show2 f =>
(Size -> a -> ShowS)
-> ([a] -> ShowS)
-> (Size -> b -> ShowS)
-> ([b] -> ShowS)
-> Size
-> f a b
-> ShowS
liftShowsPrec2 Size -> a -> ShowS
spk [a] -> ShowS
slk Size -> b -> ShowS
spv [b] -> ShowS
slv
sl :: [(a, b)] -> ShowS
sl = (Size -> a -> ShowS)
-> ([a] -> ShowS)
-> (Size -> b -> ShowS)
-> ([b] -> ShowS)
-> [(a, b)]
-> ShowS
forall a b.
(Size -> a -> ShowS)
-> ([a] -> ShowS)
-> (Size -> b -> ShowS)
-> ([b] -> ShowS)
-> [(a, b)]
-> ShowS
forall (f :: * -> * -> *) a b.
Show2 f =>
(Size -> a -> ShowS)
-> ([a] -> ShowS)
-> (Size -> b -> ShowS)
-> ([b] -> ShowS)
-> [f a b]
-> ShowS
liftShowList2 Size -> a -> ShowS
spk [a] -> ShowS
slk Size -> b -> ShowS
spv [b] -> ShowS
slv
instance Show k => Show1 (Map k) where
liftShowsPrec :: forall a.
(Size -> a -> ShowS) -> ([a] -> ShowS) -> Size -> Map k a -> ShowS
liftShowsPrec = (Size -> k -> ShowS)
-> ([k] -> ShowS)
-> (Size -> a -> ShowS)
-> ([a] -> ShowS)
-> Size
-> Map k a
-> ShowS
forall a b.
(Size -> a -> ShowS)
-> ([a] -> ShowS)
-> (Size -> b -> ShowS)
-> ([b] -> ShowS)
-> Size
-> Map a b
-> ShowS
forall (f :: * -> * -> *) a b.
Show2 f =>
(Size -> a -> ShowS)
-> ([a] -> ShowS)
-> (Size -> b -> ShowS)
-> ([b] -> ShowS)
-> Size
-> f a b
-> ShowS
liftShowsPrec2 Size -> k -> ShowS
forall a. Show a => Size -> a -> ShowS
showsPrec [k] -> ShowS
forall a. Show a => [a] -> ShowS
showList
instance (Ord k, Read k) => Read1 (Map k) where
liftReadsPrec :: forall a. (Size -> ReadS a) -> ReadS [a] -> Size -> ReadS (Map k a)
liftReadsPrec Size -> ReadS a
rp ReadS [a]
rl = ([Char] -> ReadS (Map k a)) -> Size -> ReadS (Map k a)
forall a. ([Char] -> ReadS a) -> Size -> ReadS a
readsData (([Char] -> ReadS (Map k a)) -> Size -> ReadS (Map k a))
-> ([Char] -> ReadS (Map k a)) -> Size -> ReadS (Map k a)
forall a b. (a -> b) -> a -> b
$
(Size -> ReadS [(k, a)])
-> [Char] -> ([(k, a)] -> Map k a) -> [Char] -> ReadS (Map k a)
forall a t.
(Size -> ReadS a) -> [Char] -> (a -> t) -> [Char] -> ReadS t
readsUnaryWith ((Size -> ReadS (k, a)) -> ReadS [(k, a)] -> Size -> ReadS [(k, a)]
forall a. (Size -> ReadS a) -> ReadS [a] -> Size -> ReadS [a]
forall (f :: * -> *) a.
Read1 f =>
(Size -> ReadS a) -> ReadS [a] -> Size -> ReadS (f a)
liftReadsPrec Size -> ReadS (k, a)
rp' ReadS [(k, a)]
rl') [Char]
"fromList" [(k, a)] -> Map k a
forall k a. Ord k => [(k, a)] -> Map k a
fromList
where
rp' :: Size -> ReadS (k, a)
rp' = (Size -> ReadS a) -> ReadS [a] -> Size -> ReadS (k, a)
forall a. (Size -> ReadS a) -> ReadS [a] -> Size -> ReadS (k, a)
forall (f :: * -> *) a.
Read1 f =>
(Size -> ReadS a) -> ReadS [a] -> Size -> ReadS (f a)
liftReadsPrec Size -> ReadS a
rp ReadS [a]
rl
rl' :: ReadS [(k, a)]
rl' = (Size -> ReadS a) -> ReadS [a] -> ReadS [(k, a)]
forall a. (Size -> ReadS a) -> ReadS [a] -> ReadS [(k, a)]
forall (f :: * -> *) a.
Read1 f =>
(Size -> ReadS a) -> ReadS [a] -> ReadS [f a]
liftReadList Size -> ReadS a
rp ReadS [a]
rl
instance Functor (Map k) where
fmap :: forall a b. (a -> b) -> Map k a -> Map k b
fmap a -> b
f Map k a
m = (a -> b) -> Map k a -> Map k b
forall a b k. (a -> b) -> Map k a -> Map k b
map a -> b
f Map k a
m
#ifdef __GLASGOW_HASKELL__
a
_ <$ :: forall a b. a -> Map k b -> Map k a
<$ Map k b
Tip = Map k a
forall k a. Map k a
Tip
a
a <$ (Bin Size
sx k
kx b
_ Map k b
l Map k b
r) = Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
a (a
a a -> Map k b -> Map k a
forall a b. a -> Map k b -> Map k a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Map k b
l) (a
a a -> Map k b -> Map k a
forall a b. a -> Map k b -> Map k a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Map k b
r)
#endif
instance Traversable (Map k) where
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Map k a -> f (Map k b)
traverse a -> f b
f = (k -> a -> f b) -> Map k a -> f (Map k b)
forall (t :: * -> *) k a b.
Applicative t =>
(k -> a -> t b) -> Map k a -> t (Map k b)
traverseWithKey (\k
_ -> a -> f b
f)
{-# INLINE traverse #-}
instance Foldable.Foldable (Map k) where
fold :: forall m. Monoid m => Map k m -> m
fold = Map k m -> m
forall {a} {k}. Monoid a => Map k a -> a
go
where go :: Map k a -> a
go Map k a
Tip = a
forall a. Monoid a => a
mempty
go (Bin Size
1 k
_ a
v Map k a
_ Map k a
_) = a
v
go (Bin Size
_ k
_ a
v Map k a
l Map k a
r) = Map k a -> a
go Map k a
l a -> a -> a
forall a. Monoid a => a -> a -> a
`mappend` (a
v a -> a -> a
forall a. Monoid a => a -> a -> a
`mappend` Map k a -> a
go Map k a
r)
{-# INLINABLE fold #-}
foldr :: forall a b. (a -> b -> b) -> b -> Map k a -> b
foldr = (a -> b -> b) -> b -> Map k a -> b
forall a b k. (a -> b -> b) -> b -> Map k a -> b
foldr
{-# INLINE foldr #-}
foldl :: forall b a. (b -> a -> b) -> b -> Map k a -> b
foldl = (b -> a -> b) -> b -> Map k a -> b
forall a b k. (a -> b -> a) -> a -> Map k b -> a
foldl
{-# INLINE foldl #-}
foldMap :: forall m a. Monoid m => (a -> m) -> Map k a -> m
foldMap a -> m
f Map k a
t = Map k a -> m
go Map k a
t
where go :: Map k a -> m
go Map k a
Tip = m
forall a. Monoid a => a
mempty
go (Bin Size
1 k
_ a
v Map k a
_ Map k a
_) = a -> m
f a
v
go (Bin Size
_ k
_ a
v Map k a
l Map k a
r) = Map k a -> m
go Map k a
l m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` (a -> m
f a
v m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Map k a -> m
go Map k a
r)
{-# INLINE foldMap #-}
foldl' :: forall b a. (b -> a -> b) -> b -> Map k a -> b
foldl' = (b -> a -> b) -> b -> Map k a -> b
forall a b k. (a -> b -> a) -> a -> Map k b -> a
foldl'
{-# INLINE foldl' #-}
foldr' :: forall a b. (a -> b -> b) -> b -> Map k a -> b
foldr' = (a -> b -> b) -> b -> Map k a -> b
forall a b k. (a -> b -> b) -> b -> Map k a -> b
foldr'
{-# INLINE foldr' #-}
length :: forall a. Map k a -> Size
length = Map k a -> Size
forall k a. Map k a -> Size
size
{-# INLINE length #-}
null :: forall a. Map k a -> Bool
null = Map k a -> Bool
forall k a. Map k a -> Bool
null
{-# INLINE null #-}
toList :: forall a. Map k a -> [a]
toList = Map k a -> [a]
forall k a. Map k a -> [a]
elems
{-# INLINE toList #-}
elem :: forall a. Eq a => a -> Map k a -> Bool
elem = a -> Map k a -> Bool
forall {t} {k}. Eq t => t -> Map k t -> Bool
go
where go :: t -> Map k t -> Bool
go !t
_ Map k t
Tip = Bool
False
go t
x (Bin Size
_ k
_ t
v Map k t
l Map k t
r) = t
x t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== t
v Bool -> Bool -> Bool
|| t -> Map k t -> Bool
go t
x Map k t
l Bool -> Bool -> Bool
|| t -> Map k t -> Bool
go t
x Map k t
r
{-# INLINABLE elem #-}
maximum :: forall a. Ord a => Map k a -> a
maximum = Map k a -> a
forall {a} {k}. Ord a => Map k a -> a
start
where start :: Map k a -> a
start Map k a
Tip = [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"Data.Foldable.maximum (for Data.Map): empty map"
start (Bin Size
_ k
_ a
v Map k a
l Map k a
r) = a -> Map k a -> a
forall {t} {k}. Ord t => t -> Map k t -> t
go (a -> Map k a -> a
forall {t} {k}. Ord t => t -> Map k t -> t
go a
v Map k a
l) Map k a
r
go :: t -> Map k t -> t
go !t
m Map k t
Tip = t
m
go t
m (Bin Size
_ k
_ t
v Map k t
l Map k t
r) = t -> Map k t -> t
go (t -> Map k t -> t
go (t -> t -> t
forall a. Ord a => a -> a -> a
max t
m t
v) Map k t
l) Map k t
r
{-# INLINABLE maximum #-}
minimum :: forall a. Ord a => Map k a -> a
minimum = Map k a -> a
forall {a} {k}. Ord a => Map k a -> a
start
where start :: Map k a -> a
start Map k a
Tip = [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"Data.Foldable.minimum (for Data.Map): empty map"
start (Bin Size
_ k
_ a
v Map k a
l Map k a
r) = a -> Map k a -> a
forall {t} {k}. Ord t => t -> Map k t -> t
go (a -> Map k a -> a
forall {t} {k}. Ord t => t -> Map k t -> t
go a
v Map k a
l) Map k a
r
go :: t -> Map k t -> t
go !t
m Map k t
Tip = t
m
go t
m (Bin Size
_ k
_ t
v Map k t
l Map k t
r) = t -> Map k t -> t
go (t -> Map k t -> t
go (t -> t -> t
forall a. Ord a => a -> a -> a
min t
m t
v) Map k t
l) Map k t
r
{-# INLINABLE minimum #-}
sum :: forall a. Num a => Map k a -> a
sum = (a -> a -> a) -> a -> Map k a -> a
forall a b k. (a -> b -> a) -> a -> Map k b -> a
foldl' a -> a -> a
forall a. Num a => a -> a -> a
(+) a
0
{-# INLINABLE sum #-}
product :: forall a. Num a => Map k a -> a
product = (a -> a -> a) -> a -> Map k a -> a
forall a b k. (a -> b -> a) -> a -> Map k b -> a
foldl' a -> a -> a
forall a. Num a => a -> a -> a
(*) a
1
{-# INLINABLE product #-}
instance Bifoldable Map where
bifold :: forall m. Monoid m => Map m m -> m
bifold = Map m m -> m
forall m. Monoid m => Map m m -> m
go
where go :: Map a a -> a
go Map a a
Tip = a
forall a. Monoid a => a
mempty
go (Bin Size
1 a
k a
v Map a a
_ Map a a
_) = a
k a -> a -> a
forall a. Monoid a => a -> a -> a
`mappend` a
v
go (Bin Size
_ a
k a
v Map a a
l Map a a
r) = Map a a -> a
go Map a a
l a -> a -> a
forall a. Monoid a => a -> a -> a
`mappend` (a
k a -> a -> a
forall a. Monoid a => a -> a -> a
`mappend` (a
v a -> a -> a
forall a. Monoid a => a -> a -> a
`mappend` Map a a -> a
go Map a a
r))
{-# INLINABLE bifold #-}
bifoldr :: forall a c b. (a -> c -> c) -> (b -> c -> c) -> c -> Map a b -> c
bifoldr a -> c -> c
f b -> c -> c
g c
z = c -> Map a b -> c
go c
z
where go :: c -> Map a b -> c
go c
z' Map a b
Tip = c
z'
go c
z' (Bin Size
_ a
k b
v Map a b
l Map a b
r) = c -> Map a b -> c
go (a -> c -> c
f a
k (b -> c -> c
g b
v (c -> Map a b -> c
go c
z' Map a b
r))) Map a b
l
{-# INLINE bifoldr #-}
bifoldl :: forall c a b. (c -> a -> c) -> (c -> b -> c) -> c -> Map a b -> c
bifoldl c -> a -> c
f c -> b -> c
g c
z = c -> Map a b -> c
go c
z
where go :: c -> Map a b -> c
go c
z' Map a b
Tip = c
z'
go c
z' (Bin Size
_ a
k b
v Map a b
l Map a b
r) = c -> Map a b -> c
go (c -> b -> c
g (c -> a -> c
f (c -> Map a b -> c
go c
z' Map a b
l) a
k) b
v) Map a b
r
{-# INLINE bifoldl #-}
bifoldMap :: forall m a b. Monoid m => (a -> m) -> (b -> m) -> Map a b -> m
bifoldMap a -> m
f b -> m
g Map a b
t = Map a b -> m
go Map a b
t
where go :: Map a b -> m
go Map a b
Tip = m
forall a. Monoid a => a
mempty
go (Bin Size
1 a
k b
v Map a b
_ Map a b
_) = a -> m
f a
k m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` b -> m
g b
v
go (Bin Size
_ a
k b
v Map a b
l Map a b
r) = Map a b -> m
go Map a b
l m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` (a -> m
f a
k m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` (b -> m
g b
v m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Map a b -> m
go Map a b
r))
{-# INLINE bifoldMap #-}
instance (NFData k, NFData a) => NFData (Map k a) where
rnf :: Map k a -> ()
rnf Map k a
Tip = ()
rnf (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = k -> ()
forall a. NFData a => a -> ()
rnf k
kx () -> () -> ()
forall a b. a -> b -> b
`seq` a -> ()
forall a. NFData a => a -> ()
rnf a
x () -> () -> ()
forall a b. a -> b -> b
`seq` Map k a -> ()
forall a. NFData a => a -> ()
rnf Map k a
l () -> () -> ()
forall a b. a -> b -> b
`seq` Map k a -> ()
forall a. NFData a => a -> ()
rnf Map k a
r
instance (Ord k, Read k, Read e) => Read (Map k e) where
#ifdef __GLASGOW_HASKELL__
readPrec :: ReadPrec (Map k e)
readPrec = ReadPrec (Map k e) -> ReadPrec (Map k e)
forall a. ReadPrec a -> ReadPrec a
parens (ReadPrec (Map k e) -> ReadPrec (Map k e))
-> ReadPrec (Map k e) -> ReadPrec (Map k e)
forall a b. (a -> b) -> a -> b
$ Size -> ReadPrec (Map k e) -> ReadPrec (Map k e)
forall a. Size -> ReadPrec a -> ReadPrec a
prec Size
10 (ReadPrec (Map k e) -> ReadPrec (Map k e))
-> ReadPrec (Map k e) -> ReadPrec (Map k e)
forall a b. (a -> b) -> a -> b
$ do
Ident [Char]
"fromList" <- ReadPrec Lexeme
lexP
[(k, e)]
xs <- ReadPrec [(k, e)]
forall a. Read a => ReadPrec a
readPrec
Map k e -> ReadPrec (Map k e)
forall a. a -> ReadPrec a
forall (m :: * -> *) a. Monad m => a -> m a
return ([(k, e)] -> Map k e
forall k a. Ord k => [(k, a)] -> Map k a
fromList [(k, e)]
xs)
readListPrec :: ReadPrec [Map k e]
readListPrec = ReadPrec [Map k e]
forall a. Read a => ReadPrec [a]
readListPrecDefault
#else
readsPrec p = readParen (p > 10) $ \ r -> do
("fromList",s) <- lex r
(xs,t) <- reads s
return (fromList xs,t)
#endif
instance (Show k, Show a) => Show (Map k a) where
showsPrec :: Size -> Map k a -> ShowS
showsPrec Size
d Map k a
m = Bool -> ShowS -> ShowS
showParen (Size
d Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
> Size
10) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$
[Char] -> ShowS
showString [Char]
"fromList " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [(k, a)] -> ShowS
forall a. Show a => a -> ShowS
shows (Map k a -> [(k, a)]
forall k a. Map k a -> [(k, a)]
toList Map k a
m)
splitRoot :: Map k b -> [Map k b]
splitRoot :: forall k b. Map k b -> [Map k b]
splitRoot Map k b
orig =
case Map k b
orig of
Map k b
Tip -> []
Bin Size
_ k
k b
v Map k b
l Map k b
r -> [Map k b
l, k -> b -> Map k b
forall k a. k -> a -> Map k a
singleton k
k b
v, Map k b
r]
{-# INLINE splitRoot #-}