{-# LANGUAGE CPP #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE PatternGuards #-}
#if !defined(TESTING) && defined(__GLASGOW_HASKELL__)
{-# LANGUAGE Trustworthy #-}
#endif
#ifdef __GLASGOW_HASKELL__
{-# LANGUAGE DeriveLift #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
#endif

{-# OPTIONS_HADDOCK not-home #-}

#include "containers.h"

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Set.Internal
-- Copyright   :  (c) Daan Leijen 2002
-- License     :  BSD-style
-- Maintainer  :  libraries@haskell.org
-- Portability :  portable
--
-- = WARNING
--
-- This module is considered __internal__.
--
-- The Package Versioning Policy __does not apply__.
--
-- The contents of this module may change __in any way whatsoever__
-- and __without any warning__ between minor versions of this package.
--
-- Authors importing this module are expected to track development
-- closely.
--
-- = Description
--
-- An efficient implementation of sets.
--
-- These modules are intended to be imported qualified, to avoid name
-- clashes with Prelude functions, e.g.
--
-- >  import Data.Set (Set)
-- >  import qualified Data.Set as Set
--
-- The implementation of 'Set' is based on /size balanced/ binary trees (or
-- trees of /bounded balance/) as described by:
--
--    * Stephen Adams, \"/Efficient sets: a balancing act/\",
--      Journal of Functional Programming 3(4):553-562, October 1993,
--      <http://www.swiss.ai.mit.edu/~adams/BB/>.
--    * J. Nievergelt and E.M. Reingold,
--      \"/Binary search trees of bounded balance/\",
--      SIAM journal of computing 2(1), March 1973.
--
--  Bounds for 'union', 'intersection', and 'difference' are as given
--  by
--
--    * Guy Blelloch, Daniel Ferizovic, and Yihan Sun,
--      \"/Just Join for Parallel Ordered Sets/\",
--      <https://arxiv.org/abs/1602.02120v3>.
--
-- Note that the implementation is /left-biased/ -- the elements of a
-- first argument are always preferred to the second, for example in
-- 'union' or 'insert'.  Of course, left-biasing can only be observed
-- when equality is an equivalence relation instead of structural
-- equality.
--
-- /Warning/: The size of the set must not exceed @maxBound::Int@. Violation of
-- this condition is not detected and if the size limit is exceeded, the
-- behavior of the set is completely undefined.
--
-- @since 0.5.9
-----------------------------------------------------------------------------

-- [Note: Using INLINABLE]
-- ~~~~~~~~~~~~~~~~~~~~~~~
-- It is crucial to the performance that the functions specialize on the Ord
-- type when possible. GHC 7.0 and higher does this by itself when it sees th
-- unfolding of a function -- that is why all public functions are marked
-- INLINABLE (that exposes the unfolding).


-- [Note: Using INLINE]
-- ~~~~~~~~~~~~~~~~~~~~
-- For other compilers and GHC pre 7.0, we mark some of the functions INLINE.
-- We mark the functions that just navigate down the tree (lookup, insert,
-- delete and similar). That navigation code gets inlined and thus specialized
-- when possible. There is a price to pay -- code growth. The code INLINED is
-- therefore only the tree navigation, all the real work (rebalancing) is not
-- INLINED by using a NOINLINE.
--
-- All methods marked INLINE have to be nonrecursive -- a 'go' function doing
-- the real work is provided.


-- [Note: Type of local 'go' function]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- If the local 'go' function uses an Ord class, it sometimes heap-allocates
-- the Ord dictionary when the 'go' function does not have explicit type.
-- In that case we give 'go' explicit type. But this slightly decrease
-- performance, as the resulting 'go' function can float out to top level.


-- [Note: Local 'go' functions and capturing]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- As opposed to IntSet, when 'go' function captures an argument, increased
-- heap-allocation can occur: sometimes in a polymorphic function, the 'go'
-- floats out of its enclosing function and then it heap-allocates the
-- dictionary and the argument. Maybe it floats out too late and strictness
-- analyzer cannot see that these could be passed on stack.

-- [Note: Order of constructors]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- The order of constructors of Set matters when considering performance.
-- Currently in GHC 7.0, when type has 2 constructors, a forward conditional
-- jump is made when successfully matching second constructor. Successful match
-- of first constructor results in the forward jump not taken.
-- On GHC 7.0, reordering constructors from Tip | Bin to Bin | Tip
-- improves the benchmark by up to 10% on x86.

module Data.Set.Internal (
            -- * Set type
              Set(..)       -- instance Eq,Ord,Show,Read,Data
            , Size

            -- * Operators
            , (\\)

            -- * Query
            , null
            , size
            , member
            , notMember
            , lookupLT
            , lookupGT
            , lookupLE
            , lookupGE
            , isSubsetOf
            , isProperSubsetOf
            , disjoint

            -- * Construction
            , empty
            , singleton
            , insert
            , delete
            , alterF
            , powerSet

            -- * Combine
            , union
            , unions
            , difference
            , intersection
            , intersections
            , cartesianProduct
            , disjointUnion
            , Intersection(..)


            -- * Filter
            , filter
            , takeWhileAntitone
            , dropWhileAntitone
            , spanAntitone
            , partition
            , split
            , splitMember
            , splitRoot

            -- * Indexed
            , lookupIndex
            , findIndex
            , elemAt
            , deleteAt
            , take
            , drop
            , splitAt

            -- * Map
            , map
            , mapMonotonic

            -- * Folds
            , foldr
            , foldl
            -- ** Strict folds
            , foldr'
            , foldl'
            -- ** Legacy folds
            , fold

            -- * Min\/Max
            , lookupMin
            , lookupMax
            , findMin
            , findMax
            , deleteMin
            , deleteMax
            , deleteFindMin
            , deleteFindMax
            , maxView
            , minView

            -- * Conversion

            -- ** List
            , elems
            , toList
            , fromList

            -- ** Ordered list
            , toAscList
            , toDescList
            , fromAscList
            , fromDistinctAscList
            , fromDescList
            , fromDistinctDescList

            -- * Debugging
            , showTree
            , showTreeWith
            , valid

            -- Internals (for testing)
            , bin
            , balanced
            , link
            , merge
            ) where

import Utils.Containers.Internal.Prelude hiding
  (filter,foldl,foldl',foldr,null,map,take,drop,splitAt)
import Prelude ()
import Control.Applicative (Const(..))
import qualified Data.List as List
import Data.Bits (shiftL, shiftR)
import Data.Semigroup (Semigroup(stimes))
import Data.List.NonEmpty (NonEmpty(..))
#if !(MIN_VERSION_base(4,11,0))
import Data.Semigroup (Semigroup((<>)))
#endif
import Data.Semigroup (stimesIdempotentMonoid, stimesIdempotent)
import Data.Functor.Classes
import Data.Functor.Identity (Identity)
import qualified Data.Foldable as Foldable
import Control.DeepSeq (NFData(rnf))

import Utils.Containers.Internal.StrictPair
import Utils.Containers.Internal.PtrEquality

#if __GLASGOW_HASKELL__
import GHC.Exts ( build, lazy )
import qualified GHC.Exts as GHCExts
import Text.Read ( readPrec, Read (..), Lexeme (..), parens, prec
                 , lexP, readListPrecDefault )
import Data.Data
import Language.Haskell.TH.Syntax (Lift)
-- See Note [ Template Haskell Dependencies ]
import Language.Haskell.TH ()
#endif


{--------------------------------------------------------------------
  Operators
--------------------------------------------------------------------}
infixl 9 \\ --

-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). See 'difference'.
(\\) :: Ord a => Set a -> Set a -> Set a
Set a
m1 \\ :: forall a. Ord a => Set a -> Set a -> Set a
\\ Set a
m2 = Set a -> Set a -> Set a
forall a. Ord a => Set a -> Set a -> Set a
difference Set a
m1 Set a
m2
#if __GLASGOW_HASKELL__
{-# INLINABLE (\\) #-}
#endif

{--------------------------------------------------------------------
  Sets are size balanced trees
--------------------------------------------------------------------}
-- | A set of values @a@.

-- See Note: Order of constructors
data Set a    = Bin {-# UNPACK #-} !Size !a !(Set a) !(Set a)
              | Tip

type Size     = Int

#ifdef __GLASGOW_HASKELL__
type role Set nominal
#endif

-- | @since 0.6.6
deriving instance Lift a => Lift (Set a)

instance Ord a => Monoid (Set a) where
    mempty :: Set a
mempty  = Set a
forall a. Set a
empty
    mconcat :: [Set a] -> Set a
mconcat = [Set a] -> Set a
forall (f :: * -> *) a. (Foldable f, Ord a) => f (Set a) -> Set a
unions
    mappend :: Set a -> Set a -> Set a
mappend = Set a -> Set a -> Set a
forall a. Semigroup a => a -> a -> a
(<>)

-- | @since 0.5.7
instance Ord a => Semigroup (Set a) where
    <> :: Set a -> Set a -> Set a
(<>)    = Set a -> Set a -> Set a
forall a. Ord a => Set a -> Set a -> Set a
union
    stimes :: forall b. Integral b => b -> Set a -> Set a
stimes  = b -> Set a -> Set a
forall b a. (Integral b, Monoid a) => b -> a -> a
stimesIdempotentMonoid

-- | Folds in order of increasing key.
instance Foldable.Foldable Set where
    fold :: forall m. Monoid m => Set m -> m
fold = Set m -> m
forall m. Monoid m => Set m -> m
go
      where go :: Set a -> a
go Set a
Tip = a
forall a. Monoid a => a
mempty
            go (Bin Size
1 a
k Set a
_ Set a
_) = a
k
            go (Bin Size
_ a
k Set a
l Set a
r) = Set a -> a
go Set a
l a -> a -> a
forall a. Monoid a => a -> a -> a
`mappend` (a
k a -> a -> a
forall a. Monoid a => a -> a -> a
`mappend` Set a -> a
go Set a
r)
    {-# INLINABLE fold #-}
    foldr :: forall a b. (a -> b -> b) -> b -> Set a -> b
foldr = (a -> b -> b) -> b -> Set a -> b
forall a b. (a -> b -> b) -> b -> Set a -> b
foldr
    {-# INLINE foldr #-}
    foldl :: forall b a. (b -> a -> b) -> b -> Set a -> b
foldl = (b -> a -> b) -> b -> Set a -> b
forall b a. (b -> a -> b) -> b -> Set a -> b
foldl
    {-# INLINE foldl #-}
    foldMap :: forall m a. Monoid m => (a -> m) -> Set a -> m
foldMap a -> m
f Set a
t = Set a -> m
go Set a
t
      where go :: Set a -> m
go Set a
Tip = m
forall a. Monoid a => a
mempty
            go (Bin Size
1 a
k Set a
_ Set a
_) = a -> m
f a
k
            go (Bin Size
_ a
k Set a
l Set a
r) = Set a -> m
go Set a
l m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` (a -> m
f a
k m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` Set a -> m
go Set a
r)
    {-# INLINE foldMap #-}
    foldl' :: forall b a. (b -> a -> b) -> b -> Set a -> b
foldl' = (b -> a -> b) -> b -> Set a -> b
forall b a. (b -> a -> b) -> b -> Set a -> b
foldl'
    {-# INLINE foldl' #-}
    foldr' :: forall a b. (a -> b -> b) -> b -> Set a -> b
foldr' = (a -> b -> b) -> b -> Set a -> b
forall a b. (a -> b -> b) -> b -> Set a -> b
foldr'
    {-# INLINE foldr' #-}
    length :: forall a. Set a -> Size
length = Set a -> Size
forall a. Set a -> Size
size
    {-# INLINE length #-}
    null :: forall a. Set a -> Bool
null   = Set a -> Bool
forall a. Set a -> Bool
null
    {-# INLINE null #-}
    toList :: forall a. Set a -> [a]
toList = Set a -> [a]
forall a. Set a -> [a]
toList
    {-# INLINE toList #-}
    elem :: forall a. Eq a => a -> Set a -> Bool
elem = a -> Set a -> Bool
forall a. Eq a => a -> Set a -> Bool
go
      where go :: t -> Set t -> Bool
go !t
_ Set t
Tip = Bool
False
            go t
x (Bin Size
_ t
y Set t
l Set t
r) = t
x t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== t
y Bool -> Bool -> Bool
|| t -> Set t -> Bool
go t
x Set t
l Bool -> Bool -> Bool
|| t -> Set t -> Bool
go t
x Set t
r
    {-# INLINABLE elem #-}
    minimum :: forall a. Ord a => Set a -> a
minimum = Set a -> a
forall a. Set a -> a
findMin
    {-# INLINE minimum #-}
    maximum :: forall a. Ord a => Set a -> a
maximum = Set a -> a
forall a. Set a -> a
findMax
    {-# INLINE maximum #-}
    sum :: forall a. Num a => Set a -> a
sum = (a -> a -> a) -> a -> Set a -> a
forall b a. (b -> a -> b) -> b -> Set a -> b
foldl' a -> a -> a
forall a. Num a => a -> a -> a
(+) a
0
    {-# INLINABLE sum #-}
    product :: forall a. Num a => Set a -> a
product = (a -> a -> a) -> a -> Set a -> a
forall b a. (b -> a -> b) -> b -> Set a -> b
foldl' a -> a -> a
forall a. Num a => a -> a -> a
(*) a
1
    {-# INLINABLE product #-}

#if __GLASGOW_HASKELL__

{--------------------------------------------------------------------
  A Data instance
--------------------------------------------------------------------}

-- This instance preserves data abstraction at the cost of inefficiency.
-- We provide limited reflection services for the sake of data abstraction.

instance (Data a, Ord a) => Data (Set a) where
  gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Set a -> c (Set a)
gfoldl forall d b. Data d => c (d -> b) -> d -> c b
f forall g. g -> c g
z Set a
set = ([a] -> Set a) -> c ([a] -> Set a)
forall g. g -> c g
z [a] -> Set a
forall a. Ord a => [a] -> Set a
fromList c ([a] -> Set a) -> [a] -> c (Set a)
forall d b. Data d => c (d -> b) -> d -> c b
`f` (Set a -> [a]
forall a. Set a -> [a]
toList Set a
set)
  toConstr :: Set a -> Constr
toConstr Set a
_     = Constr
fromListConstr
  gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Set a)
gunfold forall b r. Data b => c (b -> r) -> c r
k forall r. r -> c r
z Constr
c  = case Constr -> Size
constrIndex Constr
c of
    Size
1 -> c ([a] -> Set a) -> c (Set a)
forall b r. Data b => c (b -> r) -> c r
k (([a] -> Set a) -> c ([a] -> Set a)
forall r. r -> c r
z [a] -> Set a
forall a. Ord a => [a] -> Set a
fromList)
    Size
_ -> [Char] -> c (Set a)
forall a. HasCallStack => [Char] -> a
error [Char]
"gunfold"
  dataTypeOf :: Set a -> DataType
dataTypeOf Set a
_   = DataType
setDataType
  dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Set a))
dataCast1 forall d. Data d => c (t d)
f    = c (t a) -> Maybe (c (Set a))
forall {k1} {k2} (c :: k1 -> *) (t :: k2 -> k1) (t' :: k2 -> k1)
       (a :: k2).
(Typeable t, Typeable t') =>
c (t a) -> Maybe (c (t' a))
gcast1 c (t a)
forall d. Data d => c (t d)
f

fromListConstr :: Constr
fromListConstr :: Constr
fromListConstr = DataType -> [Char] -> [[Char]] -> Fixity -> Constr
mkConstr DataType
setDataType [Char]
"fromList" [] Fixity
Prefix

setDataType :: DataType
setDataType :: DataType
setDataType = [Char] -> [Constr] -> DataType
mkDataType [Char]
"Data.Set.Internal.Set" [Constr
fromListConstr]

#endif

{--------------------------------------------------------------------
  Query
--------------------------------------------------------------------}
-- | \(O(1)\). Is this the empty set?
null :: Set a -> Bool
null :: forall a. Set a -> Bool
null Set a
Tip      = Bool
True
null (Bin {}) = Bool
False
{-# INLINE null #-}

-- | \(O(1)\). The number of elements in the set.
size :: Set a -> Int
size :: forall a. Set a -> Size
size Set a
Tip = Size
0
size (Bin Size
sz a
_ Set a
_ Set a
_) = Size
sz
{-# INLINE size #-}

-- | \(O(\log n)\). Is the element in the set?
member :: Ord a => a -> Set a -> Bool
member :: forall a. Ord a => a -> Set a -> Bool
member = a -> Set a -> Bool
forall a. Ord a => a -> Set a -> Bool
go
  where
    go :: t -> Set t -> Bool
go !t
_ Set t
Tip = Bool
False
    go t
x (Bin Size
_ t
y Set t
l Set t
r) = case t -> t -> Ordering
forall a. Ord a => a -> a -> Ordering
compare t
x t
y of
      Ordering
LT -> t -> Set t -> Bool
go t
x Set t
l
      Ordering
GT -> t -> Set t -> Bool
go t
x Set t
r
      Ordering
EQ -> Bool
True
#if __GLASGOW_HASKELL__
{-# INLINABLE member #-}
#else
{-# INLINE member #-}
#endif

-- | \(O(\log n)\). Is the element not in the set?
notMember :: Ord a => a -> Set a -> Bool
notMember :: forall a. Ord a => a -> Set a -> Bool
notMember a
a Set a
t = Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ a -> Set a -> Bool
forall a. Ord a => a -> Set a -> Bool
member a
a Set a
t
#if __GLASGOW_HASKELL__
{-# INLINABLE notMember #-}
#else
{-# INLINE notMember #-}
#endif

-- | \(O(\log n)\). Find largest element smaller than the given one.
--
-- > lookupLT 3 (fromList [3, 5]) == Nothing
-- > lookupLT 5 (fromList [3, 5]) == Just 3
lookupLT :: Ord a => a -> Set a -> Maybe a
lookupLT :: forall a. Ord a => a -> Set a -> Maybe a
lookupLT = a -> Set a -> Maybe a
forall a. Ord a => a -> Set a -> Maybe a
goNothing
  where
    goNothing :: a -> Set a -> Maybe a
goNothing !a
_ Set a
Tip = Maybe a
forall a. Maybe a
Nothing
    goNothing a
x (Bin Size
_ a
y Set a
l Set a
r) | a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
y = a -> Set a -> Maybe a
goNothing a
x Set a
l
                              | Bool
otherwise = a -> a -> Set a -> Maybe a
forall {t}. Ord t => t -> t -> Set t -> Maybe t
goJust a
x a
y Set a
r

    goJust :: t -> t -> Set t -> Maybe t
goJust !t
_ t
best Set t
Tip = t -> Maybe t
forall a. a -> Maybe a
Just t
best
    goJust t
x t
best (Bin Size
_ t
y Set t
l Set t
r) | t
x t -> t -> Bool
forall a. Ord a => a -> a -> Bool
<= t
y = t -> t -> Set t -> Maybe t
goJust t
x t
best Set t
l
                                | Bool
otherwise = t -> t -> Set t -> Maybe t
goJust t
x t
y Set t
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupLT #-}
#else
{-# INLINE lookupLT #-}
#endif

-- | \(O(\log n)\). Find smallest element greater than the given one.
--
-- > lookupGT 4 (fromList [3, 5]) == Just 5
-- > lookupGT 5 (fromList [3, 5]) == Nothing
lookupGT :: Ord a => a -> Set a -> Maybe a
lookupGT :: forall a. Ord a => a -> Set a -> Maybe a
lookupGT = a -> Set a -> Maybe a
forall a. Ord a => a -> Set a -> Maybe a
goNothing
  where
    goNothing :: t -> Set t -> Maybe t
goNothing !t
_ Set t
Tip = Maybe t
forall a. Maybe a
Nothing
    goNothing t
x (Bin Size
_ t
y Set t
l Set t
r) | t
x t -> t -> Bool
forall a. Ord a => a -> a -> Bool
< t
y = t -> t -> Set t -> Maybe t
forall {t}. Ord t => t -> t -> Set t -> Maybe t
goJust t
x t
y Set t
l
                              | Bool
otherwise = t -> Set t -> Maybe t
goNothing t
x Set t
r

    goJust :: t -> t -> Set t -> Maybe t
goJust !t
_ t
best Set t
Tip = t -> Maybe t
forall a. a -> Maybe a
Just t
best
    goJust t
x t
best (Bin Size
_ t
y Set t
l Set t
r) | t
x t -> t -> Bool
forall a. Ord a => a -> a -> Bool
< t
y = t -> t -> Set t -> Maybe t
goJust t
x t
y Set t
l
                                | Bool
otherwise = t -> t -> Set t -> Maybe t
goJust t
x t
best Set t
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupGT #-}
#else
{-# INLINE lookupGT #-}
#endif

-- | \(O(\log n)\). Find largest element smaller or equal to the given one.
--
-- > lookupLE 2 (fromList [3, 5]) == Nothing
-- > lookupLE 4 (fromList [3, 5]) == Just 3
-- > lookupLE 5 (fromList [3, 5]) == Just 5
lookupLE :: Ord a => a -> Set a -> Maybe a
lookupLE :: forall a. Ord a => a -> Set a -> Maybe a
lookupLE = a -> Set a -> Maybe a
forall a. Ord a => a -> Set a -> Maybe a
goNothing
  where
    goNothing :: a -> Set a -> Maybe a
goNothing !a
_ Set a
Tip = Maybe a
forall a. Maybe a
Nothing
    goNothing a
x (Bin Size
_ a
y Set a
l Set a
r) = case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
x a
y of Ordering
LT -> a -> Set a -> Maybe a
goNothing a
x Set a
l
                                                    Ordering
EQ -> a -> Maybe a
forall a. a -> Maybe a
Just a
y
                                                    Ordering
GT -> a -> a -> Set a -> Maybe a
forall {t}. Ord t => t -> t -> Set t -> Maybe t
goJust a
x a
y Set a
r

    goJust :: t -> t -> Set t -> Maybe t
goJust !t
_ t
best Set t
Tip = t -> Maybe t
forall a. a -> Maybe a
Just t
best
    goJust t
x t
best (Bin Size
_ t
y Set t
l Set t
r) = case t -> t -> Ordering
forall a. Ord a => a -> a -> Ordering
compare t
x t
y of Ordering
LT -> t -> t -> Set t -> Maybe t
goJust t
x t
best Set t
l
                                                      Ordering
EQ -> t -> Maybe t
forall a. a -> Maybe a
Just t
y
                                                      Ordering
GT -> t -> t -> Set t -> Maybe t
goJust t
x t
y Set t
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupLE #-}
#else
{-# INLINE lookupLE #-}
#endif

-- | \(O(\log n)\). Find smallest element greater or equal to the given one.
--
-- > lookupGE 3 (fromList [3, 5]) == Just 3
-- > lookupGE 4 (fromList [3, 5]) == Just 5
-- > lookupGE 6 (fromList [3, 5]) == Nothing
lookupGE :: Ord a => a -> Set a -> Maybe a
lookupGE :: forall a. Ord a => a -> Set a -> Maybe a
lookupGE = a -> Set a -> Maybe a
forall a. Ord a => a -> Set a -> Maybe a
goNothing
  where
    goNothing :: t -> Set t -> Maybe t
goNothing !t
_ Set t
Tip = Maybe t
forall a. Maybe a
Nothing
    goNothing t
x (Bin Size
_ t
y Set t
l Set t
r) = case t -> t -> Ordering
forall a. Ord a => a -> a -> Ordering
compare t
x t
y of Ordering
LT -> t -> t -> Set t -> Maybe t
forall {t}. Ord t => t -> t -> Set t -> Maybe t
goJust t
x t
y Set t
l
                                                    Ordering
EQ -> t -> Maybe t
forall a. a -> Maybe a
Just t
y
                                                    Ordering
GT -> t -> Set t -> Maybe t
goNothing t
x Set t
r

    goJust :: a -> a -> Set a -> Maybe a
goJust !a
_ a
best Set a
Tip = a -> Maybe a
forall a. a -> Maybe a
Just a
best
    goJust a
x a
best (Bin Size
_ a
y Set a
l Set a
r) = case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
x a
y of Ordering
LT -> a -> a -> Set a -> Maybe a
goJust a
x a
y Set a
l
                                                      Ordering
EQ -> a -> Maybe a
forall a. a -> Maybe a
Just a
y
                                                      Ordering
GT -> a -> a -> Set a -> Maybe a
goJust a
x a
best Set a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupGE #-}
#else
{-# INLINE lookupGE #-}
#endif

{--------------------------------------------------------------------
  Construction
--------------------------------------------------------------------}
-- | \(O(1)\). The empty set.
empty  :: Set a
empty :: forall a. Set a
empty = Set a
forall a. Set a
Tip
{-# INLINE empty #-}

-- | \(O(1)\). Create a singleton set.
singleton :: a -> Set a
singleton :: forall a. a -> Set a
singleton a
x = Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
x Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip
{-# INLINE singleton #-}

{--------------------------------------------------------------------
  Insertion, Deletion
--------------------------------------------------------------------}
-- | \(O(\log n)\). Insert an element in a set.
-- If the set already contains an element equal to the given value,
-- it is replaced with the new value.

-- See Note: Type of local 'go' function
-- See Note: Avoiding worker/wrapper (in Data.Map.Internal)
insert :: Ord a => a -> Set a -> Set a
insert :: forall a. Ord a => a -> Set a -> Set a
insert a
x0 = a -> a -> Set a -> Set a
forall a. Ord a => a -> a -> Set a -> Set a
go a
x0 a
x0
  where
    go :: Ord a => a -> a -> Set a -> Set a
    go :: forall a. Ord a => a -> a -> Set a -> Set a
go a
orig !a
_ Set a
Tip = a -> Set a
forall a. a -> Set a
singleton (a -> a
forall a. a -> a
lazy a
orig)
    go a
orig !a
x t :: Set a
t@(Bin Size
sz a
y Set a
l Set a
r) = case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
x a
y of
        Ordering
LT | Set a
l' Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
l -> Set a
t
           | Bool
otherwise -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceL a
y Set a
l' Set a
r
           where !l' :: Set a
l' = a -> a -> Set a -> Set a
forall a. Ord a => a -> a -> Set a -> Set a
go a
orig a
x Set a
l
        Ordering
GT | Set a
r' Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
r -> Set a
t
           | Bool
otherwise -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceR a
y Set a
l Set a
r'
           where !r' :: Set a
r' = a -> a -> Set a -> Set a
forall a. Ord a => a -> a -> Set a -> Set a
go a
orig a
x Set a
r
        Ordering
EQ | a -> a
forall a. a -> a
lazy a
orig a -> Bool -> Bool
forall a b. a -> b -> b
`seq` (a
orig a -> a -> Bool
forall a. a -> a -> Bool
`ptrEq` a
y) -> Set a
t
           | Bool
otherwise -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
sz (a -> a
forall a. a -> a
lazy a
orig) Set a
l Set a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insert #-}
#else
{-# INLINE insert #-}
#endif

#ifndef __GLASGOW_HASKELL__
lazy :: a -> a
lazy a = a
#endif

-- Insert an element to the set only if it is not in the set.
-- Used by `union`.

-- See Note: Type of local 'go' function
-- See Note: Avoiding worker/wrapper (in Data.Map.Internal)
insertR :: Ord a => a -> Set a -> Set a
insertR :: forall a. Ord a => a -> Set a -> Set a
insertR a
x0 = a -> a -> Set a -> Set a
forall a. Ord a => a -> a -> Set a -> Set a
go a
x0 a
x0
  where
    go :: Ord a => a -> a -> Set a -> Set a
    go :: forall a. Ord a => a -> a -> Set a -> Set a
go a
orig !a
_ Set a
Tip = a -> Set a
forall a. a -> Set a
singleton (a -> a
forall a. a -> a
lazy a
orig)
    go a
orig !a
x t :: Set a
t@(Bin Size
_ a
y Set a
l Set a
r) = case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
x a
y of
        Ordering
LT | Set a
l' Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
l -> Set a
t
           | Bool
otherwise -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceL a
y Set a
l' Set a
r
           where !l' :: Set a
l' = a -> a -> Set a -> Set a
forall a. Ord a => a -> a -> Set a -> Set a
go a
orig a
x Set a
l
        Ordering
GT | Set a
r' Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
r -> Set a
t
           | Bool
otherwise -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceR a
y Set a
l Set a
r'
           where !r' :: Set a
r' = a -> a -> Set a -> Set a
forall a. Ord a => a -> a -> Set a -> Set a
go a
orig a
x Set a
r
        Ordering
EQ -> Set a
t
#if __GLASGOW_HASKELL__
{-# INLINABLE insertR #-}
#else
{-# INLINE insertR #-}
#endif

-- | \(O(\log n)\). Delete an element from a set.

-- See Note: Type of local 'go' function
delete :: Ord a => a -> Set a -> Set a
delete :: forall a. Ord a => a -> Set a -> Set a
delete = a -> Set a -> Set a
forall a. Ord a => a -> Set a -> Set a
go
  where
    go :: Ord a => a -> Set a -> Set a
    go :: forall a. Ord a => a -> Set a -> Set a
go !a
_ Set a
Tip = Set a
forall a. Set a
Tip
    go a
x t :: Set a
t@(Bin Size
_ a
y Set a
l Set a
r) = case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
x a
y of
        Ordering
LT | Set a
l' Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
l -> Set a
t
           | Bool
otherwise -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceR a
y Set a
l' Set a
r
           where !l' :: Set a
l' = a -> Set a -> Set a
forall a. Ord a => a -> Set a -> Set a
go a
x Set a
l
        Ordering
GT | Set a
r' Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
r -> Set a
t
           | Bool
otherwise -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceL a
y Set a
l Set a
r'
           where !r' :: Set a
r' = a -> Set a -> Set a
forall a. Ord a => a -> Set a -> Set a
go a
x Set a
r
        Ordering
EQ -> Set a -> Set a -> Set a
forall a. Set a -> Set a -> Set a
glue Set a
l Set a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE delete #-}
#else
{-# INLINE delete #-}
#endif

-- | \(O(\log n)\) @('alterF' f x s)@ can delete or insert @x@ in @s@ depending on
-- whether an equal element is found in @s@.
--
-- In short:
--
-- @
-- 'member' x \<$\> 'alterF' f x s = f ('member' x s)
-- @
--
-- Note that unlike 'insert', 'alterF' will /not/ replace an element equal to
-- the given value.
--
-- Note: 'alterF' is a variant of the @at@ combinator from "Control.Lens.At".
--
-- @since 0.6.3.1
alterF :: (Ord a, Functor f) => (Bool -> f Bool) -> a -> Set a -> f (Set a)
alterF :: forall a (f :: * -> *).
(Ord a, Functor f) =>
(Bool -> f Bool) -> a -> Set a -> f (Set a)
alterF Bool -> f Bool
f a
k Set a
s = (Bool -> Set a) -> f Bool -> f (Set a)
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Bool -> Set a
choose (Bool -> f Bool
f Bool
member_)
  where
    (Bool
member_, Set a
inserted, Set a
deleted) = case a -> Set a -> AlteredSet a
forall a. Ord a => a -> Set a -> AlteredSet a
alteredSet a
k Set a
s of
        Deleted Set a
d           -> (Bool
True , Set a
s, Set a
d)
        Inserted Set a
i          -> (Bool
False, Set a
i, Set a
s)

    choose :: Bool -> Set a
choose Bool
True  = Set a
inserted
    choose Bool
False = Set a
deleted
#ifndef __GLASGOW_HASKELL__
{-# INLINE alterF #-}
#else
{-# INLINABLE [2] alterF #-}

{-# RULES
"alterF/Const" forall k (f :: Bool -> Const a Bool) . alterF f k = \s -> Const . getConst . f $ member k s
 #-}
#endif

{-# SPECIALIZE alterF :: Ord a => (Bool -> Identity Bool) -> a -> Set a -> Identity (Set a) #-}

data AlteredSet a
      -- | The needle is present in the original set.
      -- We return the set where the needle is deleted.
    = Deleted !(Set a)

      -- | The needle is not present in the original set.
      -- We return the set with the needle inserted.
    | Inserted !(Set a)

alteredSet :: Ord a => a -> Set a -> AlteredSet a
alteredSet :: forall a. Ord a => a -> Set a -> AlteredSet a
alteredSet a
x0 Set a
s0 = a -> Set a -> AlteredSet a
forall a. Ord a => a -> Set a -> AlteredSet a
go a
x0 Set a
s0
  where
    go :: Ord a => a -> Set a -> AlteredSet a
    go :: forall a. Ord a => a -> Set a -> AlteredSet a
go a
x Set a
Tip           = Set a -> AlteredSet a
forall a. Set a -> AlteredSet a
Inserted (a -> Set a
forall a. a -> Set a
singleton a
x)
    go a
x (Bin Size
_ a
y Set a
l Set a
r) = case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
x a
y of
        Ordering
LT -> case a -> Set a -> AlteredSet a
forall a. Ord a => a -> Set a -> AlteredSet a
go a
x Set a
l of
            Deleted Set a
d           -> Set a -> AlteredSet a
forall a. Set a -> AlteredSet a
Deleted (a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceR a
y Set a
d Set a
r)
            Inserted Set a
i          -> Set a -> AlteredSet a
forall a. Set a -> AlteredSet a
Inserted (a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceL a
y Set a
i Set a
r)
        Ordering
GT -> case a -> Set a -> AlteredSet a
forall a. Ord a => a -> Set a -> AlteredSet a
go a
x Set a
r of
            Deleted Set a
d           -> Set a -> AlteredSet a
forall a. Set a -> AlteredSet a
Deleted (a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceL a
y Set a
l Set a
d)
            Inserted Set a
i          -> Set a -> AlteredSet a
forall a. Set a -> AlteredSet a
Inserted (a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceR a
y Set a
l Set a
i)
        Ordering
EQ -> Set a -> AlteredSet a
forall a. Set a -> AlteredSet a
Deleted (Set a -> Set a -> Set a
forall a. Set a -> Set a -> Set a
glue Set a
l Set a
r)
#if __GLASGOW_HASKELL__
{-# INLINABLE alteredSet #-}
#else
{-# INLINE alteredSet #-}
#endif

{--------------------------------------------------------------------
  Subset
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\).
-- @(s1 \`isProperSubsetOf\` s2)@ indicates whether @s1@ is a
-- proper subset of @s2@.
--
-- @
-- s1 \`isProperSubsetOf\` s2 = s1 ``isSubsetOf`` s2 && s1 /= s2
-- @
isProperSubsetOf :: Ord a => Set a -> Set a -> Bool
isProperSubsetOf :: forall a. Ord a => Set a -> Set a -> Bool
isProperSubsetOf Set a
s1 Set a
s2
    = Set a -> Size
forall a. Set a -> Size
size Set a
s1 Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Set a -> Size
forall a. Set a -> Size
size Set a
s2 Bool -> Bool -> Bool
&& Set a -> Set a -> Bool
forall a. Ord a => Set a -> Set a -> Bool
isSubsetOfX Set a
s1 Set a
s2
#if __GLASGOW_HASKELL__
{-# INLINABLE isProperSubsetOf #-}
#endif


-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\).
-- @(s1 \`isSubsetOf\` s2)@ indicates whether @s1@ is a subset of @s2@.
--
-- @
-- s1 \`isSubsetOf\` s2 = all (``member`` s2) s1
-- s1 \`isSubsetOf\` s2 = null (s1 ``difference`` s2)
-- s1 \`isSubsetOf\` s2 = s1 ``union`` s2 == s2
-- s1 \`isSubsetOf\` s2 = s1 ``intersection`` s2 == s1
-- @
isSubsetOf :: Ord a => Set a -> Set a -> Bool
isSubsetOf :: forall a. Ord a => Set a -> Set a -> Bool
isSubsetOf Set a
t1 Set a
t2
  = Set a -> Size
forall a. Set a -> Size
size Set a
t1 Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Set a -> Size
forall a. Set a -> Size
size Set a
t2 Bool -> Bool -> Bool
&& Set a -> Set a -> Bool
forall a. Ord a => Set a -> Set a -> Bool
isSubsetOfX Set a
t1 Set a
t2
#if __GLASGOW_HASKELL__
{-# INLINABLE isSubsetOf #-}
#endif

-- Test whether a set is a subset of another without the *initial*
-- size test.
--
-- This function is structured very much like `difference`, `union`,
-- and `intersection`. Whereas the bounds proofs for those in Blelloch
-- et al needed to account for both "split work" and "merge work", we
-- only have to worry about split work here, which is the same as in
-- those functions.
isSubsetOfX :: Ord a => Set a -> Set a -> Bool
isSubsetOfX :: forall a. Ord a => Set a -> Set a -> Bool
isSubsetOfX Set a
Tip Set a
_ = Bool
True
isSubsetOfX Set a
_ Set a
Tip = Bool
False
-- Skip the final split when we hit a singleton.
isSubsetOfX (Bin Size
1 a
x Set a
_ Set a
_) Set a
t = a -> Set a -> Bool
forall a. Ord a => a -> Set a -> Bool
member a
x Set a
t
isSubsetOfX (Bin Size
_ a
x Set a
l Set a
r) Set a
t
  = Bool
found Bool -> Bool -> Bool
&&
    -- Cheap size checks can sometimes save expensive recursive calls when the
    -- result will be False. Suppose we check whether [1..10] (with root 4) is
    -- a subset of [0..9]. After the first split, we have to check if [1..3] is
    -- a subset of [0..3] and if [5..10] is a subset of [5..9]. But we can bail
    -- immediately because size [5..10] > size [5..9].
    --
    -- Why not just call `isSubsetOf` on each side to do the size checks?
    -- Because that could make a recursive call on the left even though the
    -- size check would fail on the right. In principle, we could take this to
    -- extremes by maintaining a queue of pairs of sets to be checked, working
    -- through the tree level-wise. But that would impose higher administrative
    -- costs without obvious benefits. It might be worth considering if we find
    -- a way to use it to tighten the bounds in some useful/comprehensible way.
    Set a -> Size
forall a. Set a -> Size
size Set a
l Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Set a -> Size
forall a. Set a -> Size
size Set a
lt Bool -> Bool -> Bool
&& Set a -> Size
forall a. Set a -> Size
size Set a
r Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Set a -> Size
forall a. Set a -> Size
size Set a
gt Bool -> Bool -> Bool
&&
    Set a -> Set a -> Bool
forall a. Ord a => Set a -> Set a -> Bool
isSubsetOfX Set a
l Set a
lt Bool -> Bool -> Bool
&& Set a -> Set a -> Bool
forall a. Ord a => Set a -> Set a -> Bool
isSubsetOfX Set a
r Set a
gt
  where
    (Set a
lt,Bool
found,Set a
gt) = a -> Set a -> (Set a, Bool, Set a)
forall a. Ord a => a -> Set a -> (Set a, Bool, Set a)
splitMember a
x Set a
t
#if __GLASGOW_HASKELL__
{-# INLINABLE isSubsetOfX #-}
#endif

{--------------------------------------------------------------------
  Disjoint
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Check whether two sets are disjoint
-- (i.e., their intersection is empty).
--
-- > disjoint (fromList [2,4,6])   (fromList [1,3])     == True
-- > disjoint (fromList [2,4,6,8]) (fromList [2,3,5,7]) == False
-- > disjoint (fromList [1,2])     (fromList [1,2,3,4]) == False
-- > disjoint (fromList [])        (fromList [])        == True
--
-- @
-- xs ``disjoint`` ys = null (xs ``intersection`` ys)
-- @
--
-- @since 0.5.11

disjoint :: Ord a => Set a -> Set a -> Bool
disjoint :: forall a. Ord a => Set a -> Set a -> Bool
disjoint Set a
Tip Set a
_ = Bool
True
disjoint Set a
_ Set a
Tip = Bool
True
-- Avoid a split for the singleton case.
disjoint (Bin Size
1 a
x Set a
_ Set a
_) Set a
t = a
x a -> Set a -> Bool
forall a. Ord a => a -> Set a -> Bool
`notMember` Set a
t
disjoint (Bin Size
_ a
x Set a
l Set a
r) Set a
t
  -- Analogous implementation to `subsetOfX`
  = Bool -> Bool
not Bool
found Bool -> Bool -> Bool
&& Set a -> Set a -> Bool
forall a. Ord a => Set a -> Set a -> Bool
disjoint Set a
l Set a
lt Bool -> Bool -> Bool
&& Set a -> Set a -> Bool
forall a. Ord a => Set a -> Set a -> Bool
disjoint Set a
r Set a
gt
  where
    (Set a
lt,Bool
found,Set a
gt) = a -> Set a -> (Set a, Bool, Set a)
forall a. Ord a => a -> Set a -> (Set a, Bool, Set a)
splitMember a
x Set a
t

{--------------------------------------------------------------------
  Minimal, Maximal
--------------------------------------------------------------------}

-- We perform call-pattern specialization manually on lookupMin
-- and lookupMax. Otherwise, GHC doesn't seem to do it, which is
-- unfortunate if, for example, someone uses findMin or findMax.

lookupMinSure :: a -> Set a -> a
lookupMinSure :: forall a. a -> Set a -> a
lookupMinSure a
x Set a
Tip = a
x
lookupMinSure a
_ (Bin Size
_ a
x Set a
l Set a
_) = a -> Set a -> a
forall a. a -> Set a -> a
lookupMinSure a
x Set a
l

-- | \(O(\log n)\). The minimal element of a set.
--
-- @since 0.5.9

lookupMin :: Set a -> Maybe a
lookupMin :: forall a. Set a -> Maybe a
lookupMin Set a
Tip = Maybe a
forall a. Maybe a
Nothing
lookupMin (Bin Size
_ a
x Set a
l Set a
_) = a -> Maybe a
forall a. a -> Maybe a
Just (a -> Maybe a) -> a -> Maybe a
forall a b. (a -> b) -> a -> b
$! a -> Set a -> a
forall a. a -> Set a -> a
lookupMinSure a
x Set a
l

-- | \(O(\log n)\). The minimal element of a set.
findMin :: Set a -> a
findMin :: forall a. Set a -> a
findMin Set a
t
  | Just a
r <- Set a -> Maybe a
forall a. Set a -> Maybe a
lookupMin Set a
t = a
r
  | Bool
otherwise = [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"Set.findMin: empty set has no minimal element"

lookupMaxSure :: a -> Set a -> a
lookupMaxSure :: forall a. a -> Set a -> a
lookupMaxSure a
x Set a
Tip = a
x
lookupMaxSure a
_ (Bin Size
_ a
x Set a
_ Set a
r) = a -> Set a -> a
forall a. a -> Set a -> a
lookupMaxSure a
x Set a
r

-- | \(O(\log n)\). The maximal element of a set.
--
-- @since 0.5.9

lookupMax :: Set a -> Maybe a
lookupMax :: forall a. Set a -> Maybe a
lookupMax Set a
Tip = Maybe a
forall a. Maybe a
Nothing
lookupMax (Bin Size
_ a
x Set a
_ Set a
r) = a -> Maybe a
forall a. a -> Maybe a
Just (a -> Maybe a) -> a -> Maybe a
forall a b. (a -> b) -> a -> b
$! a -> Set a -> a
forall a. a -> Set a -> a
lookupMaxSure a
x Set a
r

-- | \(O(\log n)\). The maximal element of a set.
findMax :: Set a -> a
findMax :: forall a. Set a -> a
findMax Set a
t
  | Just a
r <- Set a -> Maybe a
forall a. Set a -> Maybe a
lookupMax Set a
t = a
r
  | Bool
otherwise = [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"Set.findMax: empty set has no maximal element"

-- | \(O(\log n)\). Delete the minimal element. Returns an empty set if the set is empty.
deleteMin :: Set a -> Set a
deleteMin :: forall a. Set a -> Set a
deleteMin (Bin Size
_ a
_ Set a
Tip Set a
r) = Set a
r
deleteMin (Bin Size
_ a
x Set a
l Set a
r)   = a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceR a
x (Set a -> Set a
forall a. Set a -> Set a
deleteMin Set a
l) Set a
r
deleteMin Set a
Tip             = Set a
forall a. Set a
Tip

-- | \(O(\log n)\). Delete the maximal element. Returns an empty set if the set is empty.
deleteMax :: Set a -> Set a
deleteMax :: forall a. Set a -> Set a
deleteMax (Bin Size
_ a
_ Set a
l Set a
Tip) = Set a
l
deleteMax (Bin Size
_ a
x Set a
l Set a
r)   = a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceL a
x Set a
l (Set a -> Set a
forall a. Set a -> Set a
deleteMax Set a
r)
deleteMax Set a
Tip             = Set a
forall a. Set a
Tip

{--------------------------------------------------------------------
  Union.
--------------------------------------------------------------------}
-- | The union of the sets in a Foldable structure : (@'unions' == 'foldl' 'union' 'empty'@).
unions :: (Foldable f, Ord a) => f (Set a) -> Set a
unions :: forall (f :: * -> *) a. (Foldable f, Ord a) => f (Set a) -> Set a
unions = (Set a -> Set a -> Set a) -> Set a -> f (Set a) -> Set a
forall b a. (b -> a -> b) -> b -> f a -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' Set a -> Set a -> Set a
forall a. Ord a => Set a -> Set a -> Set a
union Set a
forall a. Set a
empty
#if __GLASGOW_HASKELL__
{-# INLINABLE unions #-}
#endif

-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). The union of two sets, preferring the first set when
-- equal elements are encountered.
union :: Ord a => Set a -> Set a -> Set a
union :: forall a. Ord a => Set a -> Set a -> Set a
union Set a
t1 Set a
Tip  = Set a
t1
union Set a
t1 (Bin Size
1 a
x Set a
_ Set a
_) = a -> Set a -> Set a
forall a. Ord a => a -> Set a -> Set a
insertR a
x Set a
t1
union (Bin Size
1 a
x Set a
_ Set a
_) Set a
t2 = a -> Set a -> Set a
forall a. Ord a => a -> Set a -> Set a
insert a
x Set a
t2
union Set a
Tip Set a
t2  = Set a
t2
union t1 :: Set a
t1@(Bin Size
_ a
x Set a
l1 Set a
r1) Set a
t2 = case a -> Set a -> StrictPair (Set a) (Set a)
forall a. Ord a => a -> Set a -> StrictPair (Set a) (Set a)
splitS a
x Set a
t2 of
  (Set a
l2 :*: Set a
r2)
    | Set a
l1l2 Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
l1 Bool -> Bool -> Bool
&& Set a
r1r2 Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
r1 -> Set a
t1
    | Bool
otherwise -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l1l2 Set a
r1r2
    where !l1l2 :: Set a
l1l2 = Set a -> Set a -> Set a
forall a. Ord a => Set a -> Set a -> Set a
union Set a
l1 Set a
l2
          !r1r2 :: Set a
r1r2 = Set a -> Set a -> Set a
forall a. Ord a => Set a -> Set a -> Set a
union Set a
r1 Set a
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE union #-}
#endif

{--------------------------------------------------------------------
  Difference
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). Difference of two sets.
--
-- Return elements of the first set not existing in the second set.
--
-- > difference (fromList [5, 3]) (fromList [5, 7]) == singleton 3
difference :: Ord a => Set a -> Set a -> Set a
difference :: forall a. Ord a => Set a -> Set a -> Set a
difference Set a
Tip Set a
_   = Set a
forall a. Set a
Tip
difference Set a
t1 Set a
Tip  = Set a
t1
difference Set a
t1 (Bin Size
_ a
x Set a
l2 Set a
r2) = case a -> Set a -> (Set a, Set a)
forall a. Ord a => a -> Set a -> (Set a, Set a)
split a
x Set a
t1 of
   (Set a
l1, Set a
r1)
     | Set a -> Size
forall a. Set a -> Size
size Set a
l1l2 Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Set a -> Size
forall a. Set a -> Size
size Set a
r1r2 Size -> Size -> Bool
forall a. Eq a => a -> a -> Bool
== Set a -> Size
forall a. Set a -> Size
size Set a
t1 -> Set a
t1
     | Bool
otherwise -> Set a -> Set a -> Set a
forall a. Set a -> Set a -> Set a
merge Set a
l1l2 Set a
r1r2
     where !l1l2 :: Set a
l1l2 = Set a -> Set a -> Set a
forall a. Ord a => Set a -> Set a -> Set a
difference Set a
l1 Set a
l2
           !r1r2 :: Set a
r1r2 = Set a -> Set a -> Set a
forall a. Ord a => Set a -> Set a -> Set a
difference Set a
r1 Set a
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE difference #-}
#endif

{--------------------------------------------------------------------
  Intersection
--------------------------------------------------------------------}
-- | \(O\bigl(m \log\bigl(\frac{n}{m}+1\bigr)\bigr), \; 0 < m \leq n\). The intersection of two sets.
-- Elements of the result come from the first set, so for example
--
-- > import qualified Data.Set as S
-- > data AB = A | B deriving Show
-- > instance Ord AB where compare _ _ = EQ
-- > instance Eq AB where _ == _ = True
-- > main = print (S.singleton A `S.intersection` S.singleton B,
-- >               S.singleton B `S.intersection` S.singleton A)
--
-- prints @(fromList [A],fromList [B])@.
intersection :: Ord a => Set a -> Set a -> Set a
intersection :: forall a. Ord a => Set a -> Set a -> Set a
intersection Set a
Tip Set a
_ = Set a
forall a. Set a
Tip
intersection Set a
_ Set a
Tip = Set a
forall a. Set a
Tip
intersection t1 :: Set a
t1@(Bin Size
_ a
x Set a
l1 Set a
r1) Set a
t2
  | Bool
b = if Set a
l1l2 Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
l1 Bool -> Bool -> Bool
&& Set a
r1r2 Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
r1
        then Set a
t1
        else a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l1l2 Set a
r1r2
  | Bool
otherwise = Set a -> Set a -> Set a
forall a. Set a -> Set a -> Set a
merge Set a
l1l2 Set a
r1r2
  where
    !(Set a
l2, Bool
b, Set a
r2) = a -> Set a -> (Set a, Bool, Set a)
forall a. Ord a => a -> Set a -> (Set a, Bool, Set a)
splitMember a
x Set a
t2
    !l1l2 :: Set a
l1l2 = Set a -> Set a -> Set a
forall a. Ord a => Set a -> Set a -> Set a
intersection Set a
l1 Set a
l2
    !r1r2 :: Set a
r1r2 = Set a -> Set a -> Set a
forall a. Ord a => Set a -> Set a -> Set a
intersection Set a
r1 Set a
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE intersection #-}
#endif

-- | The intersection of a series of sets. Intersections are performed left-to-right.
intersections :: Ord a => NonEmpty (Set a) -> Set a
intersections :: forall a. Ord a => NonEmpty (Set a) -> Set a
intersections (Set a
s0 :| [Set a]
ss) = (Set a -> (Set a -> Set a) -> Set a -> Set a)
-> (Set a -> Set a) -> [Set a] -> Set a -> Set a
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
List.foldr Set a -> (Set a -> Set a) -> Set a -> Set a
forall {a} {a}.
Ord a =>
Set a -> (Set a -> Set a) -> Set a -> Set a
go Set a -> Set a
forall a. a -> a
id [Set a]
ss Set a
s0
    where
      go :: Set a -> (Set a -> Set a) -> Set a -> Set a
go Set a
s Set a -> Set a
r Set a
acc
          | Set a -> Bool
forall a. Set a -> Bool
null Set a
acc = Set a
forall a. Set a
empty
          | Bool
otherwise = Set a -> Set a
r (Set a -> Set a -> Set a
forall a. Ord a => Set a -> Set a -> Set a
intersection Set a
acc Set a
s)

-- | Sets form a 'Semigroup' under 'intersection'.
newtype Intersection a = Intersection { forall a. Intersection a -> Set a
getIntersection :: Set a }
    deriving (Size -> Intersection a -> ShowS
[Intersection a] -> ShowS
Intersection a -> [Char]
(Size -> Intersection a -> ShowS)
-> (Intersection a -> [Char])
-> ([Intersection a] -> ShowS)
-> Show (Intersection a)
forall a. Show a => Size -> Intersection a -> ShowS
forall a. Show a => [Intersection a] -> ShowS
forall a. Show a => Intersection a -> [Char]
forall a.
(Size -> a -> ShowS) -> (a -> [Char]) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: forall a. Show a => Size -> Intersection a -> ShowS
showsPrec :: Size -> Intersection a -> ShowS
$cshow :: forall a. Show a => Intersection a -> [Char]
show :: Intersection a -> [Char]
$cshowList :: forall a. Show a => [Intersection a] -> ShowS
showList :: [Intersection a] -> ShowS
Show, Intersection a -> Intersection a -> Bool
(Intersection a -> Intersection a -> Bool)
-> (Intersection a -> Intersection a -> Bool)
-> Eq (Intersection a)
forall a. Eq a => Intersection a -> Intersection a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: forall a. Eq a => Intersection a -> Intersection a -> Bool
== :: Intersection a -> Intersection a -> Bool
$c/= :: forall a. Eq a => Intersection a -> Intersection a -> Bool
/= :: Intersection a -> Intersection a -> Bool
Eq, Eq (Intersection a)
Eq (Intersection a) =>
(Intersection a -> Intersection a -> Ordering)
-> (Intersection a -> Intersection a -> Bool)
-> (Intersection a -> Intersection a -> Bool)
-> (Intersection a -> Intersection a -> Bool)
-> (Intersection a -> Intersection a -> Bool)
-> (Intersection a -> Intersection a -> Intersection a)
-> (Intersection a -> Intersection a -> Intersection a)
-> Ord (Intersection a)
Intersection a -> Intersection a -> Bool
Intersection a -> Intersection a -> Ordering
Intersection a -> Intersection a -> Intersection a
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall a. Ord a => Eq (Intersection a)
forall a. Ord a => Intersection a -> Intersection a -> Bool
forall a. Ord a => Intersection a -> Intersection a -> Ordering
forall a.
Ord a =>
Intersection a -> Intersection a -> Intersection a
$ccompare :: forall a. Ord a => Intersection a -> Intersection a -> Ordering
compare :: Intersection a -> Intersection a -> Ordering
$c< :: forall a. Ord a => Intersection a -> Intersection a -> Bool
< :: Intersection a -> Intersection a -> Bool
$c<= :: forall a. Ord a => Intersection a -> Intersection a -> Bool
<= :: Intersection a -> Intersection a -> Bool
$c> :: forall a. Ord a => Intersection a -> Intersection a -> Bool
> :: Intersection a -> Intersection a -> Bool
$c>= :: forall a. Ord a => Intersection a -> Intersection a -> Bool
>= :: Intersection a -> Intersection a -> Bool
$cmax :: forall a.
Ord a =>
Intersection a -> Intersection a -> Intersection a
max :: Intersection a -> Intersection a -> Intersection a
$cmin :: forall a.
Ord a =>
Intersection a -> Intersection a -> Intersection a
min :: Intersection a -> Intersection a -> Intersection a
Ord)

instance (Ord a) => Semigroup (Intersection a) where
    (Intersection Set a
a) <> :: Intersection a -> Intersection a -> Intersection a
<> (Intersection Set a
b) = Set a -> Intersection a
forall a. Set a -> Intersection a
Intersection (Set a -> Intersection a) -> Set a -> Intersection a
forall a b. (a -> b) -> a -> b
$ Set a -> Set a -> Set a
forall a. Ord a => Set a -> Set a -> Set a
intersection Set a
a Set a
b
    stimes :: forall b. Integral b => b -> Intersection a -> Intersection a
stimes = b -> Intersection a -> Intersection a
forall b a. Integral b => b -> a -> a
stimesIdempotent

{--------------------------------------------------------------------
  Filter and partition
--------------------------------------------------------------------}
-- | \(O(n)\). Filter all elements that satisfy the predicate.
filter :: (a -> Bool) -> Set a -> Set a
filter :: forall a. (a -> Bool) -> Set a -> Set a
filter a -> Bool
_ Set a
Tip = Set a
forall a. Set a
Tip
filter a -> Bool
p t :: Set a
t@(Bin Size
_ a
x Set a
l Set a
r)
    | a -> Bool
p a
x = if Set a
l Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
l' Bool -> Bool -> Bool
&& Set a
r Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
r'
            then Set a
t
            else a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l' Set a
r'
    | Bool
otherwise = Set a -> Set a -> Set a
forall a. Set a -> Set a -> Set a
merge Set a
l' Set a
r'
    where
      !l' :: Set a
l' = (a -> Bool) -> Set a -> Set a
forall a. (a -> Bool) -> Set a -> Set a
filter a -> Bool
p Set a
l
      !r' :: Set a
r' = (a -> Bool) -> Set a -> Set a
forall a. (a -> Bool) -> Set a -> Set a
filter a -> Bool
p Set a
r

-- | \(O(n)\). Partition the set into two sets, one with all elements that satisfy
-- the predicate and one with all elements that don't satisfy the predicate.
-- See also 'split'.
partition :: (a -> Bool) -> Set a -> (Set a,Set a)
partition :: forall a. (a -> Bool) -> Set a -> (Set a, Set a)
partition a -> Bool
p0 Set a
t0 = StrictPair (Set a) (Set a) -> (Set a, Set a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (Set a) (Set a) -> (Set a, Set a))
-> StrictPair (Set a) (Set a) -> (Set a, Set a)
forall a b. (a -> b) -> a -> b
$ (a -> Bool) -> Set a -> StrictPair (Set a) (Set a)
forall {a}. (a -> Bool) -> Set a -> StrictPair (Set a) (Set a)
go a -> Bool
p0 Set a
t0
  where
    go :: (a -> Bool) -> Set a -> StrictPair (Set a) (Set a)
go a -> Bool
_ Set a
Tip = (Set a
forall a. Set a
Tip Set a -> Set a -> StrictPair (Set a) (Set a)
forall a b. a -> b -> StrictPair a b
:*: Set a
forall a. Set a
Tip)
    go a -> Bool
p t :: Set a
t@(Bin Size
_ a
x Set a
l Set a
r) = case ((a -> Bool) -> Set a -> StrictPair (Set a) (Set a)
go a -> Bool
p Set a
l, (a -> Bool) -> Set a -> StrictPair (Set a) (Set a)
go a -> Bool
p Set a
r) of
      ((Set a
l1 :*: Set a
l2), (Set a
r1 :*: Set a
r2))
        | a -> Bool
p a
x       -> (if Set a
l1 Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
l Bool -> Bool -> Bool
&& Set a
r1 Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
r
                        then Set a
t
                        else a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l1 Set a
r1) Set a -> Set a -> StrictPair (Set a) (Set a)
forall a b. a -> b -> StrictPair a b
:*: Set a -> Set a -> Set a
forall a. Set a -> Set a -> Set a
merge Set a
l2 Set a
r2
        | Bool
otherwise -> Set a -> Set a -> Set a
forall a. Set a -> Set a -> Set a
merge Set a
l1 Set a
r1 Set a -> Set a -> StrictPair (Set a) (Set a)
forall a b. a -> b -> StrictPair a b
:*:
                       (if Set a
l2 Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
l Bool -> Bool -> Bool
&& Set a
r2 Set a -> Set a -> Bool
forall a. a -> a -> Bool
`ptrEq` Set a
r
                        then Set a
t
                        else a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l2 Set a
r2)

{----------------------------------------------------------------------
  Map
----------------------------------------------------------------------}

-- | \(O(n \log n)\).
-- @'map' f s@ is the set obtained by applying @f@ to each element of @s@.
--
-- It's worth noting that the size of the result may be smaller if,
-- for some @(x,y)@, @x \/= y && f x == f y@

map :: Ord b => (a->b) -> Set a -> Set b
map :: forall b a. Ord b => (a -> b) -> Set a -> Set b
map a -> b
f = [b] -> Set b
forall a. Ord a => [a] -> Set a
fromList ([b] -> Set b) -> (Set a -> [b]) -> Set a -> Set b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b) -> [a] -> [b]
forall a b. (a -> b) -> [a] -> [b]
List.map a -> b
f ([a] -> [b]) -> (Set a -> [a]) -> Set a -> [b]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Set a -> [a]
forall a. Set a -> [a]
toList
#if __GLASGOW_HASKELL__
{-# INLINABLE map #-}
#endif

-- | \(O(n)\). The
--
-- @'mapMonotonic' f s == 'map' f s@, but works only when @f@ is strictly increasing.
-- /The precondition is not checked./
-- Semi-formally, we have:
--
-- > and [x < y ==> f x < f y | x <- ls, y <- ls]
-- >                     ==> mapMonotonic f s == map f s
-- >     where ls = toList s

mapMonotonic :: (a->b) -> Set a -> Set b
mapMonotonic :: forall a b. (a -> b) -> Set a -> Set b
mapMonotonic a -> b
_ Set a
Tip = Set b
forall a. Set a
Tip
mapMonotonic a -> b
f (Bin Size
sz a
x Set a
l Set a
r) = Size -> b -> Set b -> Set b -> Set b
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
sz (a -> b
f a
x) ((a -> b) -> Set a -> Set b
forall a b. (a -> b) -> Set a -> Set b
mapMonotonic a -> b
f Set a
l) ((a -> b) -> Set a -> Set b
forall a b. (a -> b) -> Set a -> Set b
mapMonotonic a -> b
f Set a
r)

{--------------------------------------------------------------------
  Fold
--------------------------------------------------------------------}
-- | \(O(n)\). Fold the elements in the set using the given right-associative
-- binary operator. This function is an equivalent of 'foldr' and is present
-- for compatibility only.
--
-- /Please note that fold will be deprecated in the future and removed./
fold :: (a -> b -> b) -> b -> Set a -> b
fold :: forall a b. (a -> b -> b) -> b -> Set a -> b
fold = (a -> b -> b) -> b -> Set a -> b
forall a b. (a -> b -> b) -> b -> Set a -> b
foldr
{-# INLINE fold #-}

-- | \(O(n)\). Fold the elements in the set using the given right-associative
-- binary operator, such that @'foldr' f z == 'Prelude.foldr' f z . 'toAscList'@.
--
-- For example,
--
-- > toAscList set = foldr (:) [] set
foldr :: (a -> b -> b) -> b -> Set a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Set a -> b
foldr a -> b -> b
f b
z = b -> Set a -> b
go b
z
  where
    go :: b -> Set a -> b
go b
z' Set a
Tip           = b
z'
    go b
z' (Bin Size
_ a
x Set a
l Set a
r) = b -> Set a -> b
go (a -> b -> b
f a
x (b -> Set a -> b
go b
z' Set a
r)) Set a
l
{-# INLINE foldr #-}

-- | \(O(n)\). A strict version of 'foldr'. Each application of the operator is
-- evaluated before using the result in the next application. This
-- function is strict in the starting value.
foldr' :: (a -> b -> b) -> b -> Set a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Set a -> b
foldr' a -> b -> b
f b
z = b -> Set a -> b
go b
z
  where
    go :: b -> Set a -> b
go !b
z' Set a
Tip           = b
z'
    go b
z' (Bin Size
_ a
x Set a
l Set a
r) = b -> Set a -> b
go (a -> b -> b
f a
x (b -> b) -> b -> b
forall a b. (a -> b) -> a -> b
$! b -> Set a -> b
go b
z' Set a
r) Set a
l
{-# INLINE foldr' #-}

-- | \(O(n)\). Fold the elements in the set using the given left-associative
-- binary operator, such that @'foldl' f z == 'Prelude.foldl' f z . 'toAscList'@.
--
-- For example,
--
-- > toDescList set = foldl (flip (:)) [] set
foldl :: (a -> b -> a) -> a -> Set b -> a
foldl :: forall b a. (b -> a -> b) -> b -> Set a -> b
foldl a -> b -> a
f a
z = a -> Set b -> a
go a
z
  where
    go :: a -> Set b -> a
go a
z' Set b
Tip           = a
z'
    go a
z' (Bin Size
_ b
x Set b
l Set b
r) = a -> Set b -> a
go (a -> b -> a
f (a -> Set b -> a
go a
z' Set b
l) b
x) Set b
r
{-# INLINE foldl #-}

-- | \(O(n)\). A strict version of 'foldl'. Each application of the operator is
-- evaluated before using the result in the next application. This
-- function is strict in the starting value.
foldl' :: (a -> b -> a) -> a -> Set b -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Set a -> b
foldl' a -> b -> a
f a
z = a -> Set b -> a
go a
z
  where
    go :: a -> Set b -> a
go !a
z' Set b
Tip           = a
z'
    go a
z' (Bin Size
_ b
x Set b
l Set b
r) =
      let !z'' :: a
z'' = a -> Set b -> a
go a
z' Set b
l
      in a -> Set b -> a
go (a -> b -> a
f a
z'' b
x) Set b
r
{-# INLINE foldl' #-}

{--------------------------------------------------------------------
  List variations
--------------------------------------------------------------------}
-- | \(O(n)\). An alias of 'toAscList'. The elements of a set in ascending order.
-- Subject to list fusion.
elems :: Set a -> [a]
elems :: forall a. Set a -> [a]
elems = Set a -> [a]
forall a. Set a -> [a]
toAscList

{--------------------------------------------------------------------
  Lists
--------------------------------------------------------------------}

#ifdef __GLASGOW_HASKELL__
-- | @since 0.5.6.2
instance (Ord a) => GHCExts.IsList (Set a) where
  type Item (Set a) = a
  fromList :: [Item (Set a)] -> Set a
fromList = [a] -> Set a
[Item (Set a)] -> Set a
forall a. Ord a => [a] -> Set a
fromList
  toList :: Set a -> [Item (Set a)]
toList   = Set a -> [a]
Set a -> [Item (Set a)]
forall a. Set a -> [a]
toList
#endif

-- | \(O(n)\). Convert the set to a list of elements. Subject to list fusion.
toList :: Set a -> [a]
toList :: forall a. Set a -> [a]
toList = Set a -> [a]
forall a. Set a -> [a]
toAscList

-- | \(O(n)\). Convert the set to an ascending list of elements. Subject to list fusion.
toAscList :: Set a -> [a]
toAscList :: forall a. Set a -> [a]
toAscList = (a -> [a] -> [a]) -> [a] -> Set a -> [a]
forall a b. (a -> b -> b) -> b -> Set a -> b
foldr (:) []

-- | \(O(n)\). Convert the set to a descending list of elements. Subject to list
-- fusion.
toDescList :: Set a -> [a]
toDescList :: forall a. Set a -> [a]
toDescList = ([a] -> a -> [a]) -> [a] -> Set a -> [a]
forall b a. (b -> a -> b) -> b -> Set a -> b
foldl ((a -> [a] -> [a]) -> [a] -> a -> [a]
forall a b c. (a -> b -> c) -> b -> a -> c
flip (:)) []

-- List fusion for the list generating functions.
#if __GLASGOW_HASKELL__
-- The foldrFB and foldlFB are foldr and foldl equivalents, used for list fusion.
-- They are important to convert unfused to{Asc,Desc}List back, see mapFB in prelude.
foldrFB :: (a -> b -> b) -> b -> Set a -> b
foldrFB :: forall a b. (a -> b -> b) -> b -> Set a -> b
foldrFB = (a -> b -> b) -> b -> Set a -> b
forall a b. (a -> b -> b) -> b -> Set a -> b
foldr
{-# INLINE[0] foldrFB #-}
foldlFB :: (a -> b -> a) -> a -> Set b -> a
foldlFB :: forall b a. (b -> a -> b) -> b -> Set a -> b
foldlFB = (a -> b -> a) -> a -> Set b -> a
forall b a. (b -> a -> b) -> b -> Set a -> b
foldl
{-# INLINE[0] foldlFB #-}

-- Inline elems and toList, so that we need to fuse only toAscList.
{-# INLINE elems #-}
{-# INLINE toList #-}

-- The fusion is enabled up to phase 2 included. If it does not succeed,
-- convert in phase 1 the expanded to{Asc,Desc}List calls back to
-- to{Asc,Desc}List.  In phase 0, we inline fold{lr}FB (which were used in
-- a list fusion, otherwise it would go away in phase 1), and let compiler do
-- whatever it wants with to{Asc,Desc}List -- it was forbidden to inline it
-- before phase 0, otherwise the fusion rules would not fire at all.
{-# NOINLINE[0] toAscList #-}
{-# NOINLINE[0] toDescList #-}
{-# RULES "Set.toAscList" [~1] forall s . toAscList s = build (\c n -> foldrFB c n s) #-}
{-# RULES "Set.toAscListBack" [1] foldrFB (:) [] = toAscList #-}
{-# RULES "Set.toDescList" [~1] forall s . toDescList s = build (\c n -> foldlFB (\xs x -> c x xs) n s) #-}
{-# RULES "Set.toDescListBack" [1] foldlFB (\xs x -> x : xs) [] = toDescList #-}
#endif

-- | \(O(n \log n)\). Create a set from a list of elements.
--
-- If the elements are ordered, a linear-time implementation is used.

-- For some reason, when 'singleton' is used in fromList or in
-- create, it is not inlined, so we inline it manually.
fromList :: Ord a => [a] -> Set a
fromList :: forall a. Ord a => [a] -> Set a
fromList [] = Set a
forall a. Set a
Tip
fromList [a
x] = Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
x Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip
fromList (a
x0 : [a]
xs0) | a -> [a] -> Bool
forall {a}. Ord a => a -> [a] -> Bool
not_ordered a
x0 [a]
xs0 = Set a -> [a] -> Set a
forall {t :: * -> *} {a}.
(Foldable t, Ord a) =>
Set a -> t a -> Set a
fromList' (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
x0 Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip) [a]
xs0
                    | Bool
otherwise = Size -> Set a -> [a] -> Set a
forall {a} {t}.
(Ord a, Num t, Bits t) =>
t -> Set a -> [a] -> Set a
go (Size
1::Int) (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
x0 Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip) [a]
xs0
  where
    not_ordered :: a -> [a] -> Bool
not_ordered a
_ [] = Bool
False
    not_ordered a
x (a
y : [a]
_) = a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
y
    {-# INLINE not_ordered #-}

    fromList' :: Set a -> t a -> Set a
fromList' Set a
t0 t a
xs = (Set a -> a -> Set a) -> Set a -> t a -> Set a
forall b a. (b -> a -> b) -> b -> t a -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' Set a -> a -> Set a
forall {a}. Ord a => Set a -> a -> Set a
ins Set a
t0 t a
xs
      where ins :: Set a -> a -> Set a
ins Set a
t a
x = a -> Set a -> Set a
forall a. Ord a => a -> Set a -> Set a
insert a
x Set a
t

    go :: t -> Set a -> [a] -> Set a
go !t
_ Set a
t [] = Set a
t
    go t
_ Set a
t [a
x] = a -> Set a -> Set a
forall a. a -> Set a -> Set a
insertMax a
x Set a
t
    go t
s Set a
l xs :: [a]
xs@(a
x : [a]
xss) | a -> [a] -> Bool
forall {a}. Ord a => a -> [a] -> Bool
not_ordered a
x [a]
xss = Set a -> [a] -> Set a
forall {t :: * -> *} {a}.
(Foldable t, Ord a) =>
Set a -> t a -> Set a
fromList' Set a
l [a]
xs
                        | Bool
otherwise = case t -> [a] -> (Set a, [a], [a])
forall {t} {a}.
(Num t, Ord a, Bits t) =>
t -> [a] -> (Set a, [a], [a])
create t
s [a]
xss of
                            (Set a
r, [a]
ys, []) -> t -> Set a -> [a] -> Set a
go (t
s t -> Size -> t
forall a. Bits a => a -> Size -> a
`shiftL` Size
1) (a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l Set a
r) [a]
ys
                            (Set a
r, [a]
_,  [a]
ys) -> Set a -> [a] -> Set a
forall {t :: * -> *} {a}.
(Foldable t, Ord a) =>
Set a -> t a -> Set a
fromList' (a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l Set a
r) [a]
ys

    -- The create is returning a triple (tree, xs, ys). Both xs and ys
    -- represent not yet processed elements and only one of them can be nonempty.
    -- If ys is nonempty, the keys in ys are not ordered with respect to tree
    -- and must be inserted using fromList'. Otherwise the keys have been
    -- ordered so far.
    create :: t -> [a] -> (Set a, [a], [a])
create !t
_ [] = (Set a
forall a. Set a
Tip, [], [])
    create t
s xs :: [a]
xs@(a
x : [a]
xss)
      | t
s t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== t
1 = if a -> [a] -> Bool
forall {a}. Ord a => a -> [a] -> Bool
not_ordered a
x [a]
xss then (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
x Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip, [], [a]
xss)
                                      else (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
x Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip, [a]
xss, [])
      | Bool
otherwise = case t -> [a] -> (Set a, [a], [a])
create (t
s t -> Size -> t
forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [a]
xs of
                      res :: (Set a, [a], [a])
res@(Set a
_, [], [a]
_) -> (Set a, [a], [a])
res
                      (Set a
l, [a
y], [a]
zs) -> (a -> Set a -> Set a
forall a. a -> Set a -> Set a
insertMax a
y Set a
l, [], [a]
zs)
                      (Set a
l, ys :: [a]
ys@(a
y:[a]
yss), [a]
_) | a -> [a] -> Bool
forall {a}. Ord a => a -> [a] -> Bool
not_ordered a
y [a]
yss -> (Set a
l, [], [a]
ys)
                                         | Bool
otherwise -> case t -> [a] -> (Set a, [a], [a])
create (t
s t -> Size -> t
forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [a]
yss of
                                                   (Set a
r, [a]
zs, [a]
ws) -> (a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
y Set a
l Set a
r, [a]
zs, [a]
ws)
#if __GLASGOW_HASKELL__
{-# INLINABLE fromList #-}
#endif

{--------------------------------------------------------------------
  Building trees from ascending/descending lists can be done in linear time.

  Note that if [xs] is ascending that:
    fromAscList xs == fromList xs
--------------------------------------------------------------------}
-- | \(O(n)\). Build a set from an ascending list in linear time.
-- /The precondition (input list is ascending) is not checked./
fromAscList :: Eq a => [a] -> Set a
fromAscList :: forall a. Eq a => [a] -> Set a
fromAscList [a]
xs = [a] -> Set a
forall a. [a] -> Set a
fromDistinctAscList ([a] -> [a]
forall a. Eq a => [a] -> [a]
combineEq [a]
xs)
#if __GLASGOW_HASKELL__
{-# INLINABLE fromAscList #-}
#endif

-- | \(O(n)\). Build a set from a descending list in linear time.
-- /The precondition (input list is descending) is not checked./
--
-- @since 0.5.8
fromDescList :: Eq a => [a] -> Set a
fromDescList :: forall a. Eq a => [a] -> Set a
fromDescList [a]
xs = [a] -> Set a
forall a. [a] -> Set a
fromDistinctDescList ([a] -> [a]
forall a. Eq a => [a] -> [a]
combineEq [a]
xs)
#if __GLASGOW_HASKELL__
{-# INLINABLE fromDescList #-}
#endif

-- [combineEq xs] combines equal elements with [const] in an ordered list [xs]
--
-- TODO: combineEq allocates an intermediate list. It *should* be better to
-- make fromAscListBy and fromDescListBy the fundamental operations, and to
-- implement the rest using those.
combineEq :: Eq a => [a] -> [a]
combineEq :: forall a. Eq a => [a] -> [a]
combineEq [] = []
combineEq (a
x : [a]
xs) = a -> [a] -> [a]
forall {t}. Eq t => t -> [t] -> [t]
combineEq' a
x [a]
xs
  where
    combineEq' :: t -> [t] -> [t]
combineEq' t
z [] = [t
z]
    combineEq' t
z (t
y:[t]
ys)
      | t
z t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== t
y = t -> [t] -> [t]
combineEq' t
z [t]
ys
      | Bool
otherwise = t
z t -> [t] -> [t]
forall a. a -> [a] -> [a]
: t -> [t] -> [t]
combineEq' t
y [t]
ys

-- | \(O(n)\). Build a set from an ascending list of distinct elements in linear time.
-- /The precondition (input list is strictly ascending) is not checked./

-- For some reason, when 'singleton' is used in fromDistinctAscList or in
-- create, it is not inlined, so we inline it manually.

-- See Note [fromDistinctAscList implementation]
fromDistinctAscList :: [a] -> Set a
fromDistinctAscList :: forall a. [a] -> Set a
fromDistinctAscList = FromDistinctMonoState a -> Set a
forall a. FromDistinctMonoState a -> Set a
fromDistinctAscList_linkAll (FromDistinctMonoState a -> Set a)
-> ([a] -> FromDistinctMonoState a) -> [a] -> Set a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (FromDistinctMonoState a -> a -> FromDistinctMonoState a)
-> FromDistinctMonoState a -> [a] -> FromDistinctMonoState a
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' FromDistinctMonoState a -> a -> FromDistinctMonoState a
forall a. FromDistinctMonoState a -> a -> FromDistinctMonoState a
next (Stack a -> FromDistinctMonoState a
forall a. Stack a -> FromDistinctMonoState a
State0 Stack a
forall a. Stack a
Nada)
  where
    next :: FromDistinctMonoState a -> a -> FromDistinctMonoState a
    next :: forall a. FromDistinctMonoState a -> a -> FromDistinctMonoState a
next (State0 Stack a
stk) !a
x = Set a -> Stack a -> FromDistinctMonoState a
forall a. Set a -> Stack a -> FromDistinctMonoState a
fromDistinctAscList_linkTop (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
x Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip) Stack a
stk
    next (State1 Set a
l Stack a
stk) a
x = Stack a -> FromDistinctMonoState a
forall a. Stack a -> FromDistinctMonoState a
State0 (a -> Set a -> Stack a -> Stack a
forall a. a -> Set a -> Stack a -> Stack a
Push a
x Set a
l Stack a
stk)
{-# INLINE fromDistinctAscList #-}  -- INLINE for fusion

fromDistinctAscList_linkTop :: Set a -> Stack a -> FromDistinctMonoState a
fromDistinctAscList_linkTop :: forall a. Set a -> Stack a -> FromDistinctMonoState a
fromDistinctAscList_linkTop r :: Set a
r@(Bin Size
rsz a
_ Set a
_ Set a
_) (Push a
x l :: Set a
l@(Bin Size
lsz a
_ Set a
_ Set a
_) Stack a
stk)
  | Size
rsz Size -> Size -> Bool
forall a. Eq a => a -> a -> Bool
== Size
lsz = Set a -> Stack a -> FromDistinctMonoState a
forall a. Set a -> Stack a -> FromDistinctMonoState a
fromDistinctAscList_linkTop (a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
bin a
x Set a
l Set a
r) Stack a
stk
fromDistinctAscList_linkTop Set a
l Stack a
stk = Set a -> Stack a -> FromDistinctMonoState a
forall a. Set a -> Stack a -> FromDistinctMonoState a
State1 Set a
l Stack a
stk
{-# INLINABLE fromDistinctAscList_linkTop #-}

fromDistinctAscList_linkAll :: FromDistinctMonoState a -> Set a
fromDistinctAscList_linkAll :: forall a. FromDistinctMonoState a -> Set a
fromDistinctAscList_linkAll (State0 Stack a
stk)    = (Set a -> a -> Set a -> Set a) -> Set a -> Stack a -> Set a
forall b a. (b -> a -> Set a -> b) -> b -> Stack a -> b
foldl'Stack (\Set a
r a
x Set a
l -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l Set a
r) Set a
forall a. Set a
Tip Stack a
stk
fromDistinctAscList_linkAll (State1 Set a
r0 Stack a
stk) = (Set a -> a -> Set a -> Set a) -> Set a -> Stack a -> Set a
forall b a. (b -> a -> Set a -> b) -> b -> Stack a -> b
foldl'Stack (\Set a
r a
x Set a
l -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l Set a
r) Set a
r0 Stack a
stk
{-# INLINABLE fromDistinctAscList_linkAll #-}

-- | \(O(n)\). Build a set from a descending list of distinct elements in linear time.
-- /The precondition (input list is strictly descending) is not checked./
--
-- @since 0.5.8

-- For some reason, when 'singleton' is used in fromDistinctDescList or in
-- create, it is not inlined, so we inline it manually.

-- See Note [fromDistinctAscList implementation]
fromDistinctDescList :: [a] -> Set a
fromDistinctDescList :: forall a. [a] -> Set a
fromDistinctDescList = FromDistinctMonoState a -> Set a
forall a. FromDistinctMonoState a -> Set a
fromDistinctDescList_linkAll (FromDistinctMonoState a -> Set a)
-> ([a] -> FromDistinctMonoState a) -> [a] -> Set a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (FromDistinctMonoState a -> a -> FromDistinctMonoState a)
-> FromDistinctMonoState a -> [a] -> FromDistinctMonoState a
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' FromDistinctMonoState a -> a -> FromDistinctMonoState a
forall a. FromDistinctMonoState a -> a -> FromDistinctMonoState a
next (Stack a -> FromDistinctMonoState a
forall a. Stack a -> FromDistinctMonoState a
State0 Stack a
forall a. Stack a
Nada)
  where
    next :: FromDistinctMonoState a -> a -> FromDistinctMonoState a
    next :: forall a. FromDistinctMonoState a -> a -> FromDistinctMonoState a
next (State0 Stack a
stk) !a
x = Set a -> Stack a -> FromDistinctMonoState a
forall a. Set a -> Stack a -> FromDistinctMonoState a
fromDistinctDescList_linkTop (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
x Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip) Stack a
stk
    next (State1 Set a
r Stack a
stk) a
x = Stack a -> FromDistinctMonoState a
forall a. Stack a -> FromDistinctMonoState a
State0 (a -> Set a -> Stack a -> Stack a
forall a. a -> Set a -> Stack a -> Stack a
Push a
x Set a
r Stack a
stk)
{-# INLINE fromDistinctDescList #-}  -- INLINE for fusion

fromDistinctDescList_linkTop :: Set a -> Stack a -> FromDistinctMonoState a
fromDistinctDescList_linkTop :: forall a. Set a -> Stack a -> FromDistinctMonoState a
fromDistinctDescList_linkTop l :: Set a
l@(Bin Size
lsz a
_ Set a
_ Set a
_) (Push a
x r :: Set a
r@(Bin Size
rsz a
_ Set a
_ Set a
_) Stack a
stk)
  | Size
lsz Size -> Size -> Bool
forall a. Eq a => a -> a -> Bool
== Size
rsz = Set a -> Stack a -> FromDistinctMonoState a
forall a. Set a -> Stack a -> FromDistinctMonoState a
fromDistinctDescList_linkTop (a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
bin a
x Set a
l Set a
r) Stack a
stk
fromDistinctDescList_linkTop Set a
r Stack a
stk = Set a -> Stack a -> FromDistinctMonoState a
forall a. Set a -> Stack a -> FromDistinctMonoState a
State1 Set a
r Stack a
stk
{-# INLINABLE fromDistinctDescList_linkTop #-}

fromDistinctDescList_linkAll :: FromDistinctMonoState a -> Set a
fromDistinctDescList_linkAll :: forall a. FromDistinctMonoState a -> Set a
fromDistinctDescList_linkAll (State0 Stack a
stk)    = (Set a -> a -> Set a -> Set a) -> Set a -> Stack a -> Set a
forall b a. (b -> a -> Set a -> b) -> b -> Stack a -> b
foldl'Stack (\Set a
l a
x Set a
r -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l Set a
r) Set a
forall a. Set a
Tip Stack a
stk
fromDistinctDescList_linkAll (State1 Set a
l0 Stack a
stk) = (Set a -> a -> Set a -> Set a) -> Set a -> Stack a -> Set a
forall b a. (b -> a -> Set a -> b) -> b -> Stack a -> b
foldl'Stack (\Set a
l a
x Set a
r -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l Set a
r) Set a
l0 Stack a
stk
{-# INLINABLE fromDistinctDescList_linkAll #-}

data FromDistinctMonoState a
  = State0 !(Stack a)
  | State1 !(Set a) !(Stack a)

data Stack a = Push !a !(Set a) !(Stack a) | Nada

foldl'Stack :: (b -> a -> Set a -> b) -> b -> Stack a -> b
foldl'Stack :: forall b a. (b -> a -> Set a -> b) -> b -> Stack a -> b
foldl'Stack b -> a -> Set a -> b
f = b -> Stack a -> b
go
  where
    go :: b -> Stack a -> b
go !b
z Stack a
Nada = b
z
    go b
z (Push a
x Set a
t Stack a
stk) = b -> Stack a -> b
go (b -> a -> Set a -> b
f b
z a
x Set a
t) Stack a
stk
{-# INLINE foldl'Stack #-}

{--------------------------------------------------------------------
  Eq converts the set to a list. In a lazy setting, this
  actually seems one of the faster methods to compare two trees
  and it is certainly the simplest :-)
--------------------------------------------------------------------}
instance Eq a => Eq (Set a) where
  Set a
t1 == :: Set a -> Set a -> Bool
== Set a
t2  = (Set a -> Size
forall a. Set a -> Size
size Set a
t1 Size -> Size -> Bool
forall a. Eq a => a -> a -> Bool
== Set a -> Size
forall a. Set a -> Size
size Set a
t2) Bool -> Bool -> Bool
&& (Set a -> [a]
forall a. Set a -> [a]
toAscList Set a
t1 [a] -> [a] -> Bool
forall a. Eq a => a -> a -> Bool
== Set a -> [a]
forall a. Set a -> [a]
toAscList Set a
t2)

{--------------------------------------------------------------------
  Ord
--------------------------------------------------------------------}

instance Ord a => Ord (Set a) where
    compare :: Set a -> Set a -> Ordering
compare Set a
s1 Set a
s2 = [a] -> [a] -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Set a -> [a]
forall a. Set a -> [a]
toAscList Set a
s1) (Set a -> [a]
forall a. Set a -> [a]
toAscList Set a
s2)

{--------------------------------------------------------------------
  Show
--------------------------------------------------------------------}
instance Show a => Show (Set a) where
  showsPrec :: Size -> Set a -> ShowS
showsPrec Size
p Set a
xs = Bool -> ShowS -> ShowS
showParen (Size
p Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
> Size
10) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$
    [Char] -> ShowS
showString [Char]
"fromList " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> ShowS
forall a. Show a => a -> ShowS
shows (Set a -> [a]
forall a. Set a -> [a]
toList Set a
xs)

-- | @since 0.5.9
instance Eq1 Set where
    liftEq :: forall a b. (a -> b -> Bool) -> Set a -> Set b -> Bool
liftEq a -> b -> Bool
eq Set a
m Set b
n =
        Set a -> Size
forall a. Set a -> Size
size Set a
m Size -> Size -> Bool
forall a. Eq a => a -> a -> Bool
== Set b -> Size
forall a. Set a -> Size
size Set b
n Bool -> Bool -> Bool
&& (a -> b -> Bool) -> [a] -> [b] -> Bool
forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
forall (f :: * -> *) a b.
Eq1 f =>
(a -> b -> Bool) -> f a -> f b -> Bool
liftEq a -> b -> Bool
eq (Set a -> [a]
forall a. Set a -> [a]
toList Set a
m) (Set b -> [b]
forall a. Set a -> [a]
toList Set b
n)

-- | @since 0.5.9
instance Ord1 Set where
    liftCompare :: forall a b. (a -> b -> Ordering) -> Set a -> Set b -> Ordering
liftCompare a -> b -> Ordering
cmp Set a
m Set b
n =
        (a -> b -> Ordering) -> [a] -> [b] -> Ordering
forall a b. (a -> b -> Ordering) -> [a] -> [b] -> Ordering
forall (f :: * -> *) a b.
Ord1 f =>
(a -> b -> Ordering) -> f a -> f b -> Ordering
liftCompare a -> b -> Ordering
cmp (Set a -> [a]
forall a. Set a -> [a]
toList Set a
m) (Set b -> [b]
forall a. Set a -> [a]
toList Set b
n)

-- | @since 0.5.9
instance Show1 Set where
    liftShowsPrec :: forall a.
(Size -> a -> ShowS) -> ([a] -> ShowS) -> Size -> Set a -> ShowS
liftShowsPrec Size -> a -> ShowS
sp [a] -> ShowS
sl Size
d Set a
m =
        (Size -> [a] -> ShowS) -> [Char] -> Size -> [a] -> ShowS
forall a. (Size -> a -> ShowS) -> [Char] -> Size -> a -> ShowS
showsUnaryWith ((Size -> a -> ShowS) -> ([a] -> ShowS) -> Size -> [a] -> ShowS
forall a.
(Size -> a -> ShowS) -> ([a] -> ShowS) -> Size -> [a] -> ShowS
forall (f :: * -> *) a.
Show1 f =>
(Size -> a -> ShowS) -> ([a] -> ShowS) -> Size -> f a -> ShowS
liftShowsPrec Size -> a -> ShowS
sp [a] -> ShowS
sl) [Char]
"fromList" Size
d (Set a -> [a]
forall a. Set a -> [a]
toList Set a
m)

{--------------------------------------------------------------------
  Read
--------------------------------------------------------------------}
instance (Read a, Ord a) => Read (Set a) where
#ifdef __GLASGOW_HASKELL__
  readPrec :: ReadPrec (Set a)
readPrec = ReadPrec (Set a) -> ReadPrec (Set a)
forall a. ReadPrec a -> ReadPrec a
parens (ReadPrec (Set a) -> ReadPrec (Set a))
-> ReadPrec (Set a) -> ReadPrec (Set a)
forall a b. (a -> b) -> a -> b
$ Size -> ReadPrec (Set a) -> ReadPrec (Set a)
forall a. Size -> ReadPrec a -> ReadPrec a
prec Size
10 (ReadPrec (Set a) -> ReadPrec (Set a))
-> ReadPrec (Set a) -> ReadPrec (Set a)
forall a b. (a -> b) -> a -> b
$ do
    Ident [Char]
"fromList" <- ReadPrec Lexeme
lexP
    [a]
xs <- ReadPrec [a]
forall a. Read a => ReadPrec a
readPrec
    Set a -> ReadPrec (Set a)
forall a. a -> ReadPrec a
forall (m :: * -> *) a. Monad m => a -> m a
return ([a] -> Set a
forall a. Ord a => [a] -> Set a
fromList [a]
xs)

  readListPrec :: ReadPrec [Set a]
readListPrec = ReadPrec [Set a]
forall a. Read a => ReadPrec [a]
readListPrecDefault
#else
  readsPrec p = readParen (p > 10) $ \ r -> do
    ("fromList",s) <- lex r
    (xs,t) <- reads s
    return (fromList xs,t)
#endif

{--------------------------------------------------------------------
  NFData
--------------------------------------------------------------------}

instance NFData a => NFData (Set a) where
    rnf :: Set a -> ()
rnf Set a
Tip           = ()
    rnf (Bin Size
_ a
y Set a
l Set a
r) = a -> ()
forall a. NFData a => a -> ()
rnf a
y () -> () -> ()
forall a b. a -> b -> b
`seq` Set a -> ()
forall a. NFData a => a -> ()
rnf Set a
l () -> () -> ()
forall a b. a -> b -> b
`seq` Set a -> ()
forall a. NFData a => a -> ()
rnf Set a
r

{--------------------------------------------------------------------
  Split
--------------------------------------------------------------------}
-- | \(O(\log n)\). The expression (@'split' x set@) is a pair @(set1,set2)@
-- where @set1@ comprises the elements of @set@ less than @x@ and @set2@
-- comprises the elements of @set@ greater than @x@.
split :: Ord a => a -> Set a -> (Set a,Set a)
split :: forall a. Ord a => a -> Set a -> (Set a, Set a)
split a
x Set a
t = StrictPair (Set a) (Set a) -> (Set a, Set a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (Set a) (Set a) -> (Set a, Set a))
-> StrictPair (Set a) (Set a) -> (Set a, Set a)
forall a b. (a -> b) -> a -> b
$ a -> Set a -> StrictPair (Set a) (Set a)
forall a. Ord a => a -> Set a -> StrictPair (Set a) (Set a)
splitS a
x Set a
t
{-# INLINABLE split #-}

splitS :: Ord a => a -> Set a -> StrictPair (Set a) (Set a)
splitS :: forall a. Ord a => a -> Set a -> StrictPair (Set a) (Set a)
splitS a
_ Set a
Tip = (Set a
forall a. Set a
Tip Set a -> Set a -> StrictPair (Set a) (Set a)
forall a b. a -> b -> StrictPair a b
:*: Set a
forall a. Set a
Tip)
splitS a
x (Bin Size
_ a
y Set a
l Set a
r)
      = case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
x a
y of
          Ordering
LT -> let (Set a
lt :*: Set a
gt) = a -> Set a -> StrictPair (Set a) (Set a)
forall a. Ord a => a -> Set a -> StrictPair (Set a) (Set a)
splitS a
x Set a
l in (Set a
lt Set a -> Set a -> StrictPair (Set a) (Set a)
forall a b. a -> b -> StrictPair a b
:*: a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
y Set a
gt Set a
r)
          Ordering
GT -> let (Set a
lt :*: Set a
gt) = a -> Set a -> StrictPair (Set a) (Set a)
forall a. Ord a => a -> Set a -> StrictPair (Set a) (Set a)
splitS a
x Set a
r in (a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
y Set a
l Set a
lt Set a -> Set a -> StrictPair (Set a) (Set a)
forall a b. a -> b -> StrictPair a b
:*: Set a
gt)
          Ordering
EQ -> (Set a
l Set a -> Set a -> StrictPair (Set a) (Set a)
forall a b. a -> b -> StrictPair a b
:*: Set a
r)
{-# INLINABLE splitS #-}

-- | \(O(\log n)\). Performs a 'split' but also returns whether the pivot
-- element was found in the original set.
splitMember :: Ord a => a -> Set a -> (Set a,Bool,Set a)
splitMember :: forall a. Ord a => a -> Set a -> (Set a, Bool, Set a)
splitMember a
_ Set a
Tip = (Set a
forall a. Set a
Tip, Bool
False, Set a
forall a. Set a
Tip)
splitMember a
x (Bin Size
_ a
y Set a
l Set a
r)
   = case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
x a
y of
       Ordering
LT -> let (Set a
lt, Bool
found, Set a
gt) = a -> Set a -> (Set a, Bool, Set a)
forall a. Ord a => a -> Set a -> (Set a, Bool, Set a)
splitMember a
x Set a
l
                 !gt' :: Set a
gt' = a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
y Set a
gt Set a
r
             in (Set a
lt, Bool
found, Set a
gt')
       Ordering
GT -> let (Set a
lt, Bool
found, Set a
gt) = a -> Set a -> (Set a, Bool, Set a)
forall a. Ord a => a -> Set a -> (Set a, Bool, Set a)
splitMember a
x Set a
r
                 !lt' :: Set a
lt' = a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
y Set a
l Set a
lt
             in (Set a
lt', Bool
found, Set a
gt)
       Ordering
EQ -> (Set a
l, Bool
True, Set a
r)
#if __GLASGOW_HASKELL__
{-# INLINABLE splitMember #-}
#endif

{--------------------------------------------------------------------
  Indexing
--------------------------------------------------------------------}

-- | \(O(\log n)\). Return the /index/ of an element, which is its zero-based
-- index in the sorted sequence of elements. The index is a number from /0/ up
-- to, but not including, the 'size' of the set. Calls 'error' when the element
-- is not a 'member' of the set.
--
-- > findIndex 2 (fromList [5,3])    Error: element is not in the set
-- > findIndex 3 (fromList [5,3]) == 0
-- > findIndex 5 (fromList [5,3]) == 1
-- > findIndex 6 (fromList [5,3])    Error: element is not in the set
--
-- @since 0.5.4

-- See Note: Type of local 'go' function
findIndex :: Ord a => a -> Set a -> Int
findIndex :: forall a. Ord a => a -> Set a -> Size
findIndex = Size -> a -> Set a -> Size
forall a. Ord a => Size -> a -> Set a -> Size
go Size
0
  where
    go :: Ord a => Int -> a -> Set a -> Int
    go :: forall a. Ord a => Size -> a -> Set a -> Size
go !Size
_ !a
_ Set a
Tip  = [Char] -> Size
forall a. HasCallStack => [Char] -> a
error [Char]
"Set.findIndex: element is not in the set"
    go Size
idx a
x (Bin Size
_ a
kx Set a
l Set a
r) = case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
x a
kx of
      Ordering
LT -> Size -> a -> Set a -> Size
forall a. Ord a => Size -> a -> Set a -> Size
go Size
idx a
x Set a
l
      Ordering
GT -> Size -> a -> Set a -> Size
forall a. Ord a => Size -> a -> Set a -> Size
go (Size
idx Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Set a -> Size
forall a. Set a -> Size
size Set a
l Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Size
1) a
x Set a
r
      Ordering
EQ -> Size
idx Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Set a -> Size
forall a. Set a -> Size
size Set a
l
#if __GLASGOW_HASKELL__
{-# INLINABLE findIndex #-}
#endif

-- | \(O(\log n)\). Lookup the /index/ of an element, which is its zero-based index in
-- the sorted sequence of elements. The index is a number from /0/ up to, but not
-- including, the 'size' of the set.
--
-- > isJust   (lookupIndex 2 (fromList [5,3])) == False
-- > fromJust (lookupIndex 3 (fromList [5,3])) == 0
-- > fromJust (lookupIndex 5 (fromList [5,3])) == 1
-- > isJust   (lookupIndex 6 (fromList [5,3])) == False
--
-- @since 0.5.4

-- See Note: Type of local 'go' function
lookupIndex :: Ord a => a -> Set a -> Maybe Int
lookupIndex :: forall a. Ord a => a -> Set a -> Maybe Size
lookupIndex = Size -> a -> Set a -> Maybe Size
forall a. Ord a => Size -> a -> Set a -> Maybe Size
go Size
0
  where
    go :: Ord a => Int -> a -> Set a -> Maybe Int
    go :: forall a. Ord a => Size -> a -> Set a -> Maybe Size
go !Size
_ !a
_ Set a
Tip  = Maybe Size
forall a. Maybe a
Nothing
    go Size
idx a
x (Bin Size
_ a
kx Set a
l Set a
r) = case a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
x a
kx of
      Ordering
LT -> Size -> a -> Set a -> Maybe Size
forall a. Ord a => Size -> a -> Set a -> Maybe Size
go Size
idx a
x Set a
l
      Ordering
GT -> Size -> a -> Set a -> Maybe Size
forall a. Ord a => Size -> a -> Set a -> Maybe Size
go (Size
idx Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Set a -> Size
forall a. Set a -> Size
size Set a
l Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Size
1) a
x Set a
r
      Ordering
EQ -> Size -> Maybe Size
forall a. a -> Maybe a
Just (Size -> Maybe Size) -> Size -> Maybe Size
forall a b. (a -> b) -> a -> b
$! Size
idx Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Set a -> Size
forall a. Set a -> Size
size Set a
l
#if __GLASGOW_HASKELL__
{-# INLINABLE lookupIndex #-}
#endif

-- | \(O(\log n)\). Retrieve an element by its /index/, i.e. by its zero-based
-- index in the sorted sequence of elements. If the /index/ is out of range (less
-- than zero, greater or equal to 'size' of the set), 'error' is called.
--
-- > elemAt 0 (fromList [5,3]) == 3
-- > elemAt 1 (fromList [5,3]) == 5
-- > elemAt 2 (fromList [5,3])    Error: index out of range
--
-- @since 0.5.4

elemAt :: Int -> Set a -> a
elemAt :: forall a. Size -> Set a -> a
elemAt !Size
_ Set a
Tip = [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"Set.elemAt: index out of range"
elemAt Size
i (Bin Size
_ a
x Set a
l Set a
r)
  = case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
      Ordering
LT -> Size -> Set a -> a
forall a. Size -> Set a -> a
elemAt Size
i Set a
l
      Ordering
GT -> Size -> Set a -> a
forall a. Size -> Set a -> a
elemAt (Size
iSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
sizeLSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
1) Set a
r
      Ordering
EQ -> a
x
  where
    sizeL :: Size
sizeL = Set a -> Size
forall a. Set a -> Size
size Set a
l

-- | \(O(\log n)\). Delete the element at /index/, i.e. by its zero-based index in
-- the sorted sequence of elements. If the /index/ is out of range (less than zero,
-- greater or equal to 'size' of the set), 'error' is called.
--
-- > deleteAt 0    (fromList [5,3]) == singleton 5
-- > deleteAt 1    (fromList [5,3]) == singleton 3
-- > deleteAt 2    (fromList [5,3])    Error: index out of range
-- > deleteAt (-1) (fromList [5,3])    Error: index out of range
--
-- @since 0.5.4

deleteAt :: Int -> Set a -> Set a
deleteAt :: forall a. Size -> Set a -> Set a
deleteAt !Size
i Set a
t =
  case Set a
t of
    Set a
Tip -> [Char] -> Set a
forall a. HasCallStack => [Char] -> a
error [Char]
"Set.deleteAt: index out of range"
    Bin Size
_ a
x Set a
l Set a
r -> case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
      Ordering
LT -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceR a
x (Size -> Set a -> Set a
forall a. Size -> Set a -> Set a
deleteAt Size
i Set a
l) Set a
r
      Ordering
GT -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceL a
x Set a
l (Size -> Set a -> Set a
forall a. Size -> Set a -> Set a
deleteAt (Size
iSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
sizeLSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
1) Set a
r)
      Ordering
EQ -> Set a -> Set a -> Set a
forall a. Set a -> Set a -> Set a
glue Set a
l Set a
r
      where
        sizeL :: Size
sizeL = Set a -> Size
forall a. Set a -> Size
size Set a
l

-- | \(O(\log n)\). Take a given number of elements in order, beginning
-- with the smallest ones.
--
-- @
-- take n = 'fromDistinctAscList' . 'Prelude.take' n . 'toAscList'
-- @
--
-- @since 0.5.8
take :: Int -> Set a -> Set a
take :: forall a. Size -> Set a -> Set a
take Size
i Set a
m | Size
i Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
>= Set a -> Size
forall a. Set a -> Size
size Set a
m = Set a
m
take Size
i0 Set a
m0 = Size -> Set a -> Set a
forall a. Size -> Set a -> Set a
go Size
i0 Set a
m0
  where
    go :: Size -> Set a -> Set a
go Size
i !Set a
_ | Size
i Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Size
0 = Set a
forall a. Set a
Tip
    go !Size
_ Set a
Tip = Set a
forall a. Set a
Tip
    go Size
i (Bin Size
_ a
x Set a
l Set a
r) =
      case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
        Ordering
LT -> Size -> Set a -> Set a
go Size
i Set a
l
        Ordering
GT -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l (Size -> Set a -> Set a
go (Size
i Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
sizeL Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
1) Set a
r)
        Ordering
EQ -> Set a
l
      where sizeL :: Size
sizeL = Set a -> Size
forall a. Set a -> Size
size Set a
l

-- | \(O(\log n)\). Drop a given number of elements in order, beginning
-- with the smallest ones.
--
-- @
-- drop n = 'fromDistinctAscList' . 'Prelude.drop' n . 'toAscList'
-- @
--
-- @since 0.5.8
drop :: Int -> Set a -> Set a
drop :: forall a. Size -> Set a -> Set a
drop Size
i Set a
m | Size
i Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
>= Set a -> Size
forall a. Set a -> Size
size Set a
m = Set a
forall a. Set a
Tip
drop Size
i0 Set a
m0 = Size -> Set a -> Set a
forall a. Size -> Set a -> Set a
go Size
i0 Set a
m0
  where
    go :: Size -> Set a -> Set a
go Size
i Set a
m | Size
i Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Size
0 = Set a
m
    go !Size
_ Set a
Tip = Set a
forall a. Set a
Tip
    go Size
i (Bin Size
_ a
x Set a
l Set a
r) =
      case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
        Ordering
LT -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x (Size -> Set a -> Set a
go Size
i Set a
l) Set a
r
        Ordering
GT -> Size -> Set a -> Set a
go (Size
i Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
sizeL Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
1) Set a
r
        Ordering
EQ -> a -> Set a -> Set a
forall a. a -> Set a -> Set a
insertMin a
x Set a
r
      where sizeL :: Size
sizeL = Set a -> Size
forall a. Set a -> Size
size Set a
l

-- | \(O(\log n)\). Split a set at a particular index.
--
-- @
-- splitAt !n !xs = ('take' n xs, 'drop' n xs)
-- @
splitAt :: Int -> Set a -> (Set a, Set a)
splitAt :: forall a. Size -> Set a -> (Set a, Set a)
splitAt Size
i0 Set a
m0
  | Size
i0 Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
>= Set a -> Size
forall a. Set a -> Size
size Set a
m0 = (Set a
m0, Set a
forall a. Set a
Tip)
  | Bool
otherwise = StrictPair (Set a) (Set a) -> (Set a, Set a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (Set a) (Set a) -> (Set a, Set a))
-> StrictPair (Set a) (Set a) -> (Set a, Set a)
forall a b. (a -> b) -> a -> b
$ Size -> Set a -> StrictPair (Set a) (Set a)
forall {a}. Size -> Set a -> StrictPair (Set a) (Set a)
go Size
i0 Set a
m0
  where
    go :: Size -> Set a -> StrictPair (Set a) (Set a)
go Size
i Set a
m | Size
i Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Size
0 = Set a
forall a. Set a
Tip Set a -> Set a -> StrictPair (Set a) (Set a)
forall a b. a -> b -> StrictPair a b
:*: Set a
m
    go !Size
_ Set a
Tip = Set a
forall a. Set a
Tip Set a -> Set a -> StrictPair (Set a) (Set a)
forall a b. a -> b -> StrictPair a b
:*: Set a
forall a. Set a
Tip
    go Size
i (Bin Size
_ a
x Set a
l Set a
r)
      = case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
          Ordering
LT -> case Size -> Set a -> StrictPair (Set a) (Set a)
go Size
i Set a
l of
                  Set a
ll :*: Set a
lr -> Set a
ll Set a -> Set a -> StrictPair (Set a) (Set a)
forall a b. a -> b -> StrictPair a b
:*: a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
lr Set a
r
          Ordering
GT -> case Size -> Set a -> StrictPair (Set a) (Set a)
go (Size
i Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
sizeL Size -> Size -> Size
forall a. Num a => a -> a -> a
- Size
1) Set a
r of
                  Set a
rl :*: Set a
rr -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l Set a
rl Set a -> Set a -> StrictPair (Set a) (Set a)
forall a b. a -> b -> StrictPair a b
:*: Set a
rr
          Ordering
EQ -> Set a
l Set a -> Set a -> StrictPair (Set a) (Set a)
forall a b. a -> b -> StrictPair a b
:*: a -> Set a -> Set a
forall a. a -> Set a -> Set a
insertMin a
x Set a
r
      where sizeL :: Size
sizeL = Set a -> Size
forall a. Set a -> Size
size Set a
l

-- | \(O(\log n)\). Take while a predicate on the elements holds.
-- The user is responsible for ensuring that for all elements @j@ and @k@ in the set,
-- @j \< k ==\> p j \>= p k@. See note at 'spanAntitone'.
--
-- @
-- takeWhileAntitone p = 'fromDistinctAscList' . 'Data.List.takeWhile' p . 'toList'
-- takeWhileAntitone p = 'filter' p
-- @
--
-- @since 0.5.8

takeWhileAntitone :: (a -> Bool) -> Set a -> Set a
takeWhileAntitone :: forall a. (a -> Bool) -> Set a -> Set a
takeWhileAntitone a -> Bool
_ Set a
Tip = Set a
forall a. Set a
Tip
takeWhileAntitone a -> Bool
p (Bin Size
_ a
x Set a
l Set a
r)
  | a -> Bool
p a
x = a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l ((a -> Bool) -> Set a -> Set a
forall a. (a -> Bool) -> Set a -> Set a
takeWhileAntitone a -> Bool
p Set a
r)
  | Bool
otherwise = (a -> Bool) -> Set a -> Set a
forall a. (a -> Bool) -> Set a -> Set a
takeWhileAntitone a -> Bool
p Set a
l

-- | \(O(\log n)\). Drop while a predicate on the elements holds.
-- The user is responsible for ensuring that for all elements @j@ and @k@ in the set,
-- @j \< k ==\> p j \>= p k@. See note at 'spanAntitone'.
--
-- @
-- dropWhileAntitone p = 'fromDistinctAscList' . 'Data.List.dropWhile' p . 'toList'
-- dropWhileAntitone p = 'filter' (not . p)
-- @
--
-- @since 0.5.8

dropWhileAntitone :: (a -> Bool) -> Set a -> Set a
dropWhileAntitone :: forall a. (a -> Bool) -> Set a -> Set a
dropWhileAntitone a -> Bool
_ Set a
Tip = Set a
forall a. Set a
Tip
dropWhileAntitone a -> Bool
p (Bin Size
_ a
x Set a
l Set a
r)
  | a -> Bool
p a
x = (a -> Bool) -> Set a -> Set a
forall a. (a -> Bool) -> Set a -> Set a
dropWhileAntitone a -> Bool
p Set a
r
  | Bool
otherwise = a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x ((a -> Bool) -> Set a -> Set a
forall a. (a -> Bool) -> Set a -> Set a
dropWhileAntitone a -> Bool
p Set a
l) Set a
r

-- | \(O(\log n)\). Divide a set at the point where a predicate on the elements stops holding.
-- The user is responsible for ensuring that for all elements @j@ and @k@ in the set,
-- @j \< k ==\> p j \>= p k@.
--
-- @
-- spanAntitone p xs = ('takeWhileAntitone' p xs, 'dropWhileAntitone' p xs)
-- spanAntitone p xs = partition p xs
-- @
--
-- Note: if @p@ is not actually antitone, then @spanAntitone@ will split the set
-- at some /unspecified/ point where the predicate switches from holding to not
-- holding (where the predicate is seen to hold before the first element and to fail
-- after the last element).
--
-- @since 0.5.8

spanAntitone :: (a -> Bool) -> Set a -> (Set a, Set a)
spanAntitone :: forall a. (a -> Bool) -> Set a -> (Set a, Set a)
spanAntitone a -> Bool
p0 Set a
m = StrictPair (Set a) (Set a) -> (Set a, Set a)
forall a b. StrictPair a b -> (a, b)
toPair ((a -> Bool) -> Set a -> StrictPair (Set a) (Set a)
forall {a}. (a -> Bool) -> Set a -> StrictPair (Set a) (Set a)
go a -> Bool
p0 Set a
m)
  where
    go :: (a -> Bool) -> Set a -> StrictPair (Set a) (Set a)
go a -> Bool
_ Set a
Tip = Set a
forall a. Set a
Tip Set a -> Set a -> StrictPair (Set a) (Set a)
forall a b. a -> b -> StrictPair a b
:*: Set a
forall a. Set a
Tip
    go a -> Bool
p (Bin Size
_ a
x Set a
l Set a
r)
      | a -> Bool
p a
x = let Set a
u :*: Set a
v = (a -> Bool) -> Set a -> StrictPair (Set a) (Set a)
go a -> Bool
p Set a
r in a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l Set a
u Set a -> Set a -> StrictPair (Set a) (Set a)
forall a b. a -> b -> StrictPair a b
:*: Set a
v
      | Bool
otherwise = let Set a
u :*: Set a
v = (a -> Bool) -> Set a -> StrictPair (Set a) (Set a)
go a -> Bool
p Set a
l in Set a
u Set a -> Set a -> StrictPair (Set a) (Set a)
forall a b. a -> b -> StrictPair a b
:*: a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
v Set a
r


{--------------------------------------------------------------------
  Utility functions that maintain the balance properties of the tree.
  All constructors assume that all values in [l] < [x] and all values
  in [r] > [x], and that [l] and [r] are valid trees.

  In order of sophistication:
    [Bin sz x l r]    The type constructor.
    [bin x l r]       Maintains the correct size, assumes that both [l]
                      and [r] are balanced with respect to each other.
    [balance x l r]   Restores the balance and size.
                      Assumes that the original tree was balanced and
                      that [l] or [r] has changed by at most one element.
    [link x l r]      Restores balance and size.

  Furthermore, we can construct a new tree from two trees. Both operations
  assume that all values in [l] < all values in [r] and that [l] and [r]
  are valid:
    [glue l r]        Glues [l] and [r] together. Assumes that [l] and
                      [r] are already balanced with respect to each other.
    [merge l r]       Merges two trees and restores balance.
--------------------------------------------------------------------}

{--------------------------------------------------------------------
  Link
--------------------------------------------------------------------}
link :: a -> Set a -> Set a -> Set a
link :: forall a. a -> Set a -> Set a -> Set a
link a
x Set a
Tip Set a
r  = a -> Set a -> Set a
forall a. a -> Set a -> Set a
insertMin a
x Set a
r
link a
x Set a
l Set a
Tip  = a -> Set a -> Set a
forall a. a -> Set a -> Set a
insertMax a
x Set a
l
link a
x l :: Set a
l@(Bin Size
sizeL a
y Set a
ly Set a
ry) r :: Set a
r@(Bin Size
sizeR a
z Set a
lz Set a
rz)
  | Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
sizeL Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
sizeR  = a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceL a
z (a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
l Set a
lz) Set a
rz
  | Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
sizeR Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
sizeL  = a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceR a
y Set a
ly (a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
link a
x Set a
ry Set a
r)
  | Bool
otherwise            = a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
bin a
x Set a
l Set a
r


-- insertMin and insertMax don't perform potentially expensive comparisons.
insertMax,insertMin :: a -> Set a -> Set a
insertMax :: forall a. a -> Set a -> Set a
insertMax a
x Set a
t
  = case Set a
t of
      Set a
Tip -> a -> Set a
forall a. a -> Set a
singleton a
x
      Bin Size
_ a
y Set a
l Set a
r
          -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceR a
y Set a
l (a -> Set a -> Set a
forall a. a -> Set a -> Set a
insertMax a
x Set a
r)

insertMin :: forall a. a -> Set a -> Set a
insertMin a
x Set a
t
  = case Set a
t of
      Set a
Tip -> a -> Set a
forall a. a -> Set a
singleton a
x
      Bin Size
_ a
y Set a
l Set a
r
          -> a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceL a
y (a -> Set a -> Set a
forall a. a -> Set a -> Set a
insertMin a
x Set a
l) Set a
r

{--------------------------------------------------------------------
  [merge l r]: merges two trees.
--------------------------------------------------------------------}
merge :: Set a -> Set a -> Set a
merge :: forall a. Set a -> Set a -> Set a
merge Set a
Tip Set a
r   = Set a
r
merge Set a
l Set a
Tip   = Set a
l
merge l :: Set a
l@(Bin Size
sizeL a
x Set a
lx Set a
rx) r :: Set a
r@(Bin Size
sizeR a
y Set a
ly Set a
ry)
  | Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
sizeL Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
sizeR = a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceL a
y (Set a -> Set a -> Set a
forall a. Set a -> Set a -> Set a
merge Set a
l Set a
ly) Set a
ry
  | Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
sizeR Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
sizeL = a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceR a
x Set a
lx (Set a -> Set a -> Set a
forall a. Set a -> Set a -> Set a
merge Set a
rx Set a
r)
  | Bool
otherwise           = Set a -> Set a -> Set a
forall a. Set a -> Set a -> Set a
glue Set a
l Set a
r

{--------------------------------------------------------------------
  [glue l r]: glues two trees together.
  Assumes that [l] and [r] are already balanced with respect to each other.
--------------------------------------------------------------------}
glue :: Set a -> Set a -> Set a
glue :: forall a. Set a -> Set a -> Set a
glue Set a
Tip Set a
r = Set a
r
glue Set a
l Set a
Tip = Set a
l
glue l :: Set a
l@(Bin Size
sl a
xl Set a
ll Set a
lr) r :: Set a
r@(Bin Size
sr a
xr Set a
rl Set a
rr)
  | Size
sl Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
> Size
sr = let !(a
m :*: Set a
l') = a -> Set a -> Set a -> StrictPair a (Set a)
forall a. a -> Set a -> Set a -> StrictPair a (Set a)
maxViewSure a
xl Set a
ll Set a
lr in a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceR a
m Set a
l' Set a
r
  | Bool
otherwise = let !(a
m :*: Set a
r') = a -> Set a -> Set a -> StrictPair a (Set a)
forall a. a -> Set a -> Set a -> StrictPair a (Set a)
minViewSure a
xr Set a
rl Set a
rr in a -> Set a -> Set a -> Set a
forall a. a -> Set a -> Set a -> Set a
balanceL a
m Set a
l Set a
r'

-- | \(O(\log n)\). Delete and find the minimal element.
--
-- > deleteFindMin set = (findMin set, deleteMin set)

deleteFindMin :: Set a -> (a,Set a)
deleteFindMin :: forall a. Set a -> (a, Set a)
deleteFindMin Set a
t
  | Just (a, Set a)
r <- Set a -> Maybe (a, Set a)
forall a. Set a -> Maybe (a, Set a)
minView Set a
t = (a, Set a)
r
  | Bool
otherwise = ([Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"Set.deleteFindMin: can not return the minimal element of an empty set", Set a
forall a. Set a
Tip)

-- | \(O(\log n)\). Delete and find the maximal element.
--
-- > deleteFindMax set = (findMax set, deleteMax set)
deleteFindMax :: Set a -> (a,Set a)
deleteFindMax :: forall a. Set a -> (a, Set a)
deleteFindMax Set a
t
  | Just (a, Set a)
r <- Set a -> Maybe (a, Set a)
forall a. Set a -> Maybe (a, Set a)
maxView Set a
t = (a, Set a)
r
  | Bool
otherwise = ([Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"Set.deleteFindMax: can not return the maximal element of an empty set", Set a
forall a. Set a
Tip)

minViewSure :: a -> Set a -> Set a -> StrictPair a (Set a)
minViewSure :: forall a. a -> Set a -> Set a -> StrictPair a (Set a)
minViewSure = a -> Set a -> Set a -> StrictPair a (Set a)
forall a. a -> Set a -> Set a -> StrictPair a (Set a)
go
  where
    go :: t -> Set t -> Set t -> StrictPair t (Set t)
go t
x Set t
Tip Set t
r = t
x t -> Set t -> StrictPair t (Set t)
forall a b. a -> b -> StrictPair a b
:*: Set t
r
    go t
x (Bin Size
_ t
xl Set t
ll Set t
lr) Set t
r =
      case t -> Set t -> Set t -> StrictPair t (Set t)
go t
xl Set t
ll Set t
lr of
        t
xm :*: Set t
l' -> t
xm t -> Set t -> StrictPair t (Set t)
forall a b. a -> b -> StrictPair a b
:*: t -> Set t -> Set t -> Set t
forall a. a -> Set a -> Set a -> Set a
balanceR t
x Set t
l' Set t
r

-- | \(O(\log n)\). Retrieves the minimal key of the set, and the set
-- stripped of that element, or 'Nothing' if passed an empty set.
minView :: Set a -> Maybe (a, Set a)
minView :: forall a. Set a -> Maybe (a, Set a)
minView Set a
Tip = Maybe (a, Set a)
forall a. Maybe a
Nothing
minView (Bin Size
_ a
x Set a
l Set a
r) = (a, Set a) -> Maybe (a, Set a)
forall a. a -> Maybe a
Just ((a, Set a) -> Maybe (a, Set a)) -> (a, Set a) -> Maybe (a, Set a)
forall a b. (a -> b) -> a -> b
$! StrictPair a (Set a) -> (a, Set a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair a (Set a) -> (a, Set a))
-> StrictPair a (Set a) -> (a, Set a)
forall a b. (a -> b) -> a -> b
$ a -> Set a -> Set a -> StrictPair a (Set a)
forall a. a -> Set a -> Set a -> StrictPair a (Set a)
minViewSure a
x Set a
l Set a
r

maxViewSure :: a -> Set a -> Set a -> StrictPair a (Set a)
maxViewSure :: forall a. a -> Set a -> Set a -> StrictPair a (Set a)
maxViewSure = a -> Set a -> Set a -> StrictPair a (Set a)
forall a. a -> Set a -> Set a -> StrictPair a (Set a)
go
  where
    go :: t -> Set t -> Set t -> StrictPair t (Set t)
go t
x Set t
l Set t
Tip = t
x t -> Set t -> StrictPair t (Set t)
forall a b. a -> b -> StrictPair a b
:*: Set t
l
    go t
x Set t
l (Bin Size
_ t
xr Set t
rl Set t
rr) =
      case t -> Set t -> Set t -> StrictPair t (Set t)
go t
xr Set t
rl Set t
rr of
        t
xm :*: Set t
r' -> t
xm t -> Set t -> StrictPair t (Set t)
forall a b. a -> b -> StrictPair a b
:*: t -> Set t -> Set t -> Set t
forall a. a -> Set a -> Set a -> Set a
balanceL t
x Set t
l Set t
r'

-- | \(O(\log n)\). Retrieves the maximal key of the set, and the set
-- stripped of that element, or 'Nothing' if passed an empty set.
maxView :: Set a -> Maybe (a, Set a)
maxView :: forall a. Set a -> Maybe (a, Set a)
maxView Set a
Tip = Maybe (a, Set a)
forall a. Maybe a
Nothing
maxView (Bin Size
_ a
x Set a
l Set a
r) = (a, Set a) -> Maybe (a, Set a)
forall a. a -> Maybe a
Just ((a, Set a) -> Maybe (a, Set a)) -> (a, Set a) -> Maybe (a, Set a)
forall a b. (a -> b) -> a -> b
$! StrictPair a (Set a) -> (a, Set a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair a (Set a) -> (a, Set a))
-> StrictPair a (Set a) -> (a, Set a)
forall a b. (a -> b) -> a -> b
$ a -> Set a -> Set a -> StrictPair a (Set a)
forall a. a -> Set a -> Set a -> StrictPair a (Set a)
maxViewSure a
x Set a
l Set a
r

{--------------------------------------------------------------------
  [balance x l r] balances two trees with value x.
  The sizes of the trees should balance after decreasing the
  size of one of them. (a rotation).

  [delta] is the maximal relative difference between the sizes of
          two trees, it corresponds with the [w] in Adams' paper.
  [ratio] is the ratio between an outer and inner sibling of the
          heavier subtree in an unbalanced setting. It determines
          whether a double or single rotation should be performed
          to restore balance. It is corresponds with the inverse
          of $\alpha$ in Adam's article.

  Note that according to the Adam's paper:
  - [delta] should be larger than 4.646 with a [ratio] of 2.
  - [delta] should be larger than 3.745 with a [ratio] of 1.534.

  But the Adam's paper is erroneous:
  - it can be proved that for delta=2 and delta>=5 there does
    not exist any ratio that would work
  - delta=4.5 and ratio=2 does not work

  That leaves two reasonable variants, delta=3 and delta=4,
  both with ratio=2.

  - A lower [delta] leads to a more 'perfectly' balanced tree.
  - A higher [delta] performs less rebalancing.

  In the benchmarks, delta=3 is faster on insert operations,
  and delta=4 has slightly better deletes. As the insert speedup
  is larger, we currently use delta=3.

--------------------------------------------------------------------}
delta,ratio :: Int
delta :: Size
delta = Size
3
ratio :: Size
ratio = Size
2

-- The balance function is equivalent to the following:
--
--   balance :: a -> Set a -> Set a -> Set a
--   balance x l r
--     | sizeL + sizeR <= 1   = Bin sizeX x l r
--     | sizeR > delta*sizeL  = rotateL x l r
--     | sizeL > delta*sizeR  = rotateR x l r
--     | otherwise            = Bin sizeX x l r
--     where
--       sizeL = size l
--       sizeR = size r
--       sizeX = sizeL + sizeR + 1
--
--   rotateL :: a -> Set a -> Set a -> Set a
--   rotateL x l r@(Bin _ _ ly ry) | size ly < ratio*size ry = singleL x l r
--                                 | otherwise               = doubleL x l r
--   rotateR :: a -> Set a -> Set a -> Set a
--   rotateR x l@(Bin _ _ ly ry) r | size ry < ratio*size ly = singleR x l r
--                                 | otherwise               = doubleR x l r
--
--   singleL, singleR :: a -> Set a -> Set a -> Set a
--   singleL x1 t1 (Bin _ x2 t2 t3)  = bin x2 (bin x1 t1 t2) t3
--   singleR x1 (Bin _ x2 t1 t2) t3  = bin x2 t1 (bin x1 t2 t3)
--
--   doubleL, doubleR :: a -> Set a -> Set a -> Set a
--   doubleL x1 t1 (Bin _ x2 (Bin _ x3 t2 t3) t4) = bin x3 (bin x1 t1 t2) (bin x2 t3 t4)
--   doubleR x1 (Bin _ x2 t1 (Bin _ x3 t2 t3)) t4 = bin x3 (bin x2 t1 t2) (bin x1 t3 t4)
--
-- It is only written in such a way that every node is pattern-matched only once.
--
-- Only balanceL and balanceR are needed at the moment, so balance is not here anymore.
-- In case it is needed, it can be found in Data.Map.

-- Functions balanceL and balanceR are specialised versions of balance.
-- balanceL only checks whether the left subtree is too big,
-- balanceR only checks whether the right subtree is too big.

-- balanceL is called when left subtree might have been inserted to or when
-- right subtree might have been deleted from.
balanceL :: a -> Set a -> Set a -> Set a
balanceL :: forall a. a -> Set a -> Set a -> Set a
balanceL a
x Set a
l Set a
r = case Set a
r of
  Set a
Tip -> case Set a
l of
           Set a
Tip -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
x Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip
           (Bin Size
_ a
_ Set a
Tip Set a
Tip) -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
2 a
x Set a
l Set a
forall a. Set a
Tip
           (Bin Size
_ a
lx Set a
Tip (Bin Size
_ a
lrx Set a
_ Set a
_)) -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
3 a
lrx (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
lx Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip) (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
x Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip)
           (Bin Size
_ a
lx ll :: Set a
ll@(Bin Size
_ a
_ Set a
_ Set a
_) Set a
Tip) -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
3 a
lx Set a
ll (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
x Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip)
           (Bin Size
ls a
lx ll :: Set a
ll@(Bin Size
lls a
_ Set a
_ Set a
_) lr :: Set a
lr@(Bin Size
lrs a
lrx Set a
lrl Set a
lrr))
             | Size
lrs Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
ratioSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
lls -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
ls) a
lx Set a
ll (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lrs) a
x Set a
lr Set a
forall a. Set a
Tip)
             | Bool
otherwise -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
ls) a
lrx (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
llsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Set a -> Size
forall a. Set a -> Size
size Set a
lrl) a
lx Set a
ll Set a
lrl) (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Set a -> Size
forall a. Set a -> Size
size Set a
lrr) a
x Set a
lrr Set a
forall a. Set a
Tip)

  (Bin Size
rs a
_ Set a
_ Set a
_) -> case Set a
l of
           Set a
Tip -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) a
x Set a
forall a. Set a
Tip Set a
r

           (Bin Size
ls a
lx Set a
ll Set a
lr)
              | Size
ls Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
> Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
rs  -> case (Set a
ll, Set a
lr) of
                   (Bin Size
lls a
_ Set a
_ Set a
_, Bin Size
lrs a
lrx Set a
lrl Set a
lrr)
                     | Size
lrs Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
ratioSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
lls -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) a
lx Set a
ll (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lrs) a
x Set a
lr Set a
r)
                     | Bool
otherwise -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) a
lrx (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
llsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Set a -> Size
forall a. Set a -> Size
size Set a
lrl) a
lx Set a
ll Set a
lrl) (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Set a -> Size
forall a. Set a -> Size
size Set a
lrr) a
x Set a
lrr Set a
r)
                   (Set a
_, Set a
_) -> [Char] -> Set a
forall a. HasCallStack => [Char] -> a
error [Char]
"Failure in Data.Set.balanceL"
              | Bool
otherwise -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) a
x Set a
l Set a
r
{-# NOINLINE balanceL #-}

-- balanceR is called when right subtree might have been inserted to or when
-- left subtree might have been deleted from.
balanceR :: a -> Set a -> Set a -> Set a
balanceR :: forall a. a -> Set a -> Set a -> Set a
balanceR a
x Set a
l Set a
r = case Set a
l of
  Set a
Tip -> case Set a
r of
           Set a
Tip -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
x Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip
           (Bin Size
_ a
_ Set a
Tip Set a
Tip) -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
2 a
x Set a
forall a. Set a
Tip Set a
r
           (Bin Size
_ a
rx Set a
Tip rr :: Set a
rr@(Bin Size
_ a
_ Set a
_ Set a
_)) -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
3 a
rx (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
x Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip) Set a
rr
           (Bin Size
_ a
rx (Bin Size
_ a
rlx Set a
_ Set a
_) Set a
Tip) -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
3 a
rlx (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
x Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip) (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin Size
1 a
rx Set a
forall a. Set a
Tip Set a
forall a. Set a
Tip)
           (Bin Size
rs a
rx rl :: Set a
rl@(Bin Size
rls a
rlx Set a
rll Set a
rlr) rr :: Set a
rr@(Bin Size
rrs a
_ Set a
_ Set a
_))
             | Size
rls Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
ratioSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
rrs -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) a
rx (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rls) a
x Set a
forall a. Set a
Tip Set a
rl) Set a
rr
             | Bool
otherwise -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) a
rlx (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Set a -> Size
forall a. Set a -> Size
size Set a
rll) a
x Set a
forall a. Set a
Tip Set a
rll) (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rrsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Set a -> Size
forall a. Set a -> Size
size Set a
rlr) a
rx Set a
rlr Set a
rr)

  (Bin Size
ls a
_ Set a
_ Set a
_) -> case Set a
r of
           Set a
Tip -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
ls) a
x Set a
l Set a
forall a. Set a
Tip

           (Bin Size
rs a
rx Set a
rl Set a
rr)
              | Size
rs Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
> Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
ls  -> case (Set a
rl, Set a
rr) of
                   (Bin Size
rls a
rlx Set a
rll Set a
rlr, Bin Size
rrs a
_ Set a
_ Set a
_)
                     | Size
rls Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
< Size
ratioSize -> Size -> Size
forall a. Num a => a -> a -> a
*Size
rrs -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) a
rx (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rls) a
x Set a
l Set a
rl) Set a
rr
                     | Bool
otherwise -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) a
rlx (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Set a -> Size
forall a. Set a -> Size
size Set a
rll) a
x Set a
l Set a
rll) (Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rrsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Set a -> Size
forall a. Set a -> Size
size Set a
rlr) a
rx Set a
rlr Set a
rr)
                   (Set a
_, Set a
_) -> [Char] -> Set a
forall a. HasCallStack => [Char] -> a
error [Char]
"Failure in Data.Set.balanceR"
              | Bool
otherwise -> Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Size
1Size -> Size -> Size
forall a. Num a => a -> a -> a
+Size
lsSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
rs) a
x Set a
l Set a
r
{-# NOINLINE balanceR #-}

{--------------------------------------------------------------------
  The bin constructor maintains the size of the tree
--------------------------------------------------------------------}
bin :: a -> Set a -> Set a -> Set a
bin :: forall a. a -> Set a -> Set a -> Set a
bin a
x Set a
l Set a
r
  = Size -> a -> Set a -> Set a -> Set a
forall a. Size -> a -> Set a -> Set a -> Set a
Bin (Set a -> Size
forall a. Set a -> Size
size Set a
l Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Set a -> Size
forall a. Set a -> Size
size Set a
r Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Size
1) a
x Set a
l Set a
r
{-# INLINE bin #-}


{--------------------------------------------------------------------
  Utilities
--------------------------------------------------------------------}

-- | \(O(1)\).  Decompose a set into pieces based on the structure of the underlying
-- tree.  This function is useful for consuming a set in parallel.
--
-- No guarantee is made as to the sizes of the pieces; an internal, but
-- deterministic process determines this.  However, it is guaranteed that the pieces
-- returned will be in ascending order (all elements in the first subset less than all
-- elements in the second, and so on).
--
-- Examples:
--
-- > splitRoot (fromList [1..6]) ==
-- >   [fromList [1,2,3],fromList [4],fromList [5,6]]
--
-- > splitRoot empty == []
--
--  Note that the current implementation does not return more than three subsets,
--  but you should not depend on this behaviour because it can change in the
--  future without notice.
--
-- @since 0.5.4
splitRoot :: Set a -> [Set a]
splitRoot :: forall a. Set a -> [Set a]
splitRoot Set a
orig =
  case Set a
orig of
    Set a
Tip           -> []
    Bin Size
_ a
v Set a
l Set a
r -> [Set a
l, a -> Set a
forall a. a -> Set a
singleton a
v, Set a
r]
{-# INLINE splitRoot #-}


-- | \(O(2^n \log n)\). Calculate the power set of a set: the set of all its subsets.
--
-- @
-- t ``member`` powerSet s == t ``isSubsetOf`` s
-- @
--
-- Example:
--
-- @
-- powerSet (fromList [1,2,3]) =
--   fromList $ map fromList [[],[1],[1,2],[1,2,3],[1,3],[2],[2,3],[3]]
-- @
--
-- @since 0.5.11

-- Proof of complexity: step executes n times. At the ith step,
-- "insertMin x `mapMonotonic` pxs" takes O(2^i log i) time since pxs has size
-- 2^i - 1 and we insertMin into its elements which are sets of size <= i.
-- "insertMin (singleton x)" and "`glue` pxs" are cheaper operations that both
-- take O(i) time. Over n steps, we have a total cost of
--
--   O(\sum_{i=1}^{n-1} 2^i log i)
-- = O(log n * \sum_{i=1}^{n-1} 2^i)
-- = O(2^n log n)

powerSet :: Set a -> Set (Set a)
powerSet :: forall a. Set a -> Set (Set a)
powerSet Set a
xs0 = Set a -> Set (Set a) -> Set (Set a)
forall a. a -> Set a -> Set a
insertMin Set a
forall a. Set a
empty ((a -> Set (Set a) -> Set (Set a))
-> Set (Set a) -> Set a -> Set (Set a)
forall a b. (a -> b -> b) -> b -> Set a -> b
foldr' a -> Set (Set a) -> Set (Set a)
forall {a}. a -> Set (Set a) -> Set (Set a)
step Set (Set a)
forall a. Set a
Tip Set a
xs0) where
  step :: a -> Set (Set a) -> Set (Set a)
step a
x Set (Set a)
pxs = Set a -> Set (Set a) -> Set (Set a)
forall a. a -> Set a -> Set a
insertMin (a -> Set a
forall a. a -> Set a
singleton a
x) (a -> Set a -> Set a
forall a. a -> Set a -> Set a
insertMin a
x (Set a -> Set a) -> Set (Set a) -> Set (Set a)
forall a b. (a -> b) -> Set a -> Set b
`mapMonotonic` Set (Set a)
pxs) Set (Set a) -> Set (Set a) -> Set (Set a)
forall a. Set a -> Set a -> Set a
`glue` Set (Set a)
pxs

-- | \(O(nm)\). Calculate the Cartesian product of two sets.
--
-- @
-- cartesianProduct xs ys = fromList $ liftA2 (,) (toList xs) (toList ys)
-- @
--
-- Example:
--
-- @
-- cartesianProduct (fromList [1,2]) (fromList [\'a\',\'b\']) =
--   fromList [(1,\'a\'), (1,\'b\'), (2,\'a\'), (2,\'b\')]
-- @
--
-- @since 0.5.11
cartesianProduct :: Set a -> Set b -> Set (a, b)
-- The obvious big-O optimal (O(nm)) implementation would be
--
--   cartesianProduct _as Tip = Tip
--   cartesianProduct as bs = fromDistinctAscList
--     [(a,b) | a <- toList as, b <- toList bs]
--
-- Unfortunately, this is much slower in practice, at least when the sets are
-- constructed from ascending lists. I tried doing the same thing using a
-- known-length (perfect balancing) variant of fromDistinctAscList, but it
-- still didn't come close to the performance of the implementation we use in my
-- very informal tests.
--
-- The implementation we use (slightly modified from one that Edward Kmett
-- hacked together) is also optimal but performs better in practice. We map
-- each element a in as to a set made up of (a,b) for every element b in bs,
-- taking O(nm) overall. Then we merge these sets up the tree of as, which takes
-- O(n log m). A brief sketch of proof for the latter:
--
-- Consider all nodes in the tree at the same distance from the root to be at
-- the same "level". The nodes farthest from the root are at level 0, with
-- levels increasing by 1 towards the root. Being a balanced tree, there are
-- O(n/2^i) nodes at level i. At every node at level i, we merge the merged left
-- set, current set, and merged right set into a set of size O(2^i*m) in
-- O(log (2^i*m)) = O(i + log m) time. Over all levels, we do a total work of
--
--   O(\sum_{i=0}^{root_level} n * (i + log m) / 2^i)
-- = O(  \sum_{i=0}^{root_level} n * i / 2^i
--     + \sum_{i=0}^{root_level} n * log m / 2^i)
-- = O(  n * \sum_{i=0}^{root_level} i/2^i
--     + n * log m * \sum_{i=0}^{root_level} 1/2^i)
-- = O(  n * \sum_{i=0}^{inf} i/2^i
--     + n * log m * \sum_{i=0}^{inf} 1/2^i)
--
-- The sum terms converge, and we get O(n log m).

-- When the second argument has at most one element, we can be a little
-- clever.
cartesianProduct :: forall a b. Set a -> Set b -> Set (a, b)
cartesianProduct !Set a
_as Set b
Tip = Set (a, b)
forall a. Set a
Tip
cartesianProduct Set a
as (Bin Size
1 b
b Set b
_ Set b
_) = (a -> (a, b)) -> Set a -> Set (a, b)
forall a b. (a -> b) -> Set a -> Set b
mapMonotonic ((a -> b -> (a, b)) -> b -> a -> (a, b)
forall a b c. (a -> b -> c) -> b -> a -> c
flip (,) b
b) Set a
as
cartesianProduct Set a
as Set b
bs =
  MergeSet (a, b) -> Set (a, b)
forall a. MergeSet a -> Set a
getMergeSet (MergeSet (a, b) -> Set (a, b)) -> MergeSet (a, b) -> Set (a, b)
forall a b. (a -> b) -> a -> b
$ (a -> MergeSet (a, b)) -> Set a -> MergeSet (a, b)
forall m a. Monoid m => (a -> m) -> Set a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap (\a
a -> Set (a, b) -> MergeSet (a, b)
forall a. Set a -> MergeSet a
MergeSet (Set (a, b) -> MergeSet (a, b)) -> Set (a, b) -> MergeSet (a, b)
forall a b. (a -> b) -> a -> b
$ (b -> (a, b)) -> Set b -> Set (a, b)
forall a b. (a -> b) -> Set a -> Set b
mapMonotonic ((,) a
a) Set b
bs) Set a
as

-- A version of Set with peculiar Semigroup and Monoid instances.
-- The result of xs <> ys will only be a valid set if the greatest
-- element of xs is strictly less than the least element of ys.
-- This is used to define cartesianProduct.
newtype MergeSet a = MergeSet { forall a. MergeSet a -> Set a
getMergeSet :: Set a }

instance Semigroup (MergeSet a) where
  MergeSet Set a
xs <> :: MergeSet a -> MergeSet a -> MergeSet a
<> MergeSet Set a
ys = Set a -> MergeSet a
forall a. Set a -> MergeSet a
MergeSet (Set a -> Set a -> Set a
forall a. Set a -> Set a -> Set a
merge Set a
xs Set a
ys)

instance Monoid (MergeSet a) where
  mempty :: MergeSet a
mempty = Set a -> MergeSet a
forall a. Set a -> MergeSet a
MergeSet Set a
forall a. Set a
empty

  mappend :: MergeSet a -> MergeSet a -> MergeSet a
mappend = MergeSet a -> MergeSet a -> MergeSet a
forall a. Semigroup a => a -> a -> a
(<>)

-- | \(O(n+m)\). Calculate the disjoint union of two sets.
--
-- @ disjointUnion xs ys = map Left xs ``union`` map Right ys @
--
-- Example:
--
-- @
-- disjointUnion (fromList [1,2]) (fromList ["hi", "bye"]) =
--   fromList [Left 1, Left 2, Right "hi", Right "bye"]
-- @
--
-- @since 0.5.11
disjointUnion :: Set a -> Set b -> Set (Either a b)
disjointUnion :: forall a b. Set a -> Set b -> Set (Either a b)
disjointUnion Set a
as Set b
bs = Set (Either a b) -> Set (Either a b) -> Set (Either a b)
forall a. Set a -> Set a -> Set a
merge ((a -> Either a b) -> Set a -> Set (Either a b)
forall a b. (a -> b) -> Set a -> Set b
mapMonotonic a -> Either a b
forall a b. a -> Either a b
Left Set a
as) ((b -> Either a b) -> Set b -> Set (Either a b)
forall a b. (a -> b) -> Set a -> Set b
mapMonotonic b -> Either a b
forall a b. b -> Either a b
Right Set b
bs)

{--------------------------------------------------------------------
  Debugging
--------------------------------------------------------------------}
-- | \(O(n \log n)\). Show the tree that implements the set. The tree is shown
-- in a compressed, hanging format.
showTree :: Show a => Set a -> String
showTree :: forall a. Show a => Set a -> [Char]
showTree Set a
s
  = Bool -> Bool -> Set a -> [Char]
forall a. Show a => Bool -> Bool -> Set a -> [Char]
showTreeWith Bool
True Bool
False Set a
s


{- | \(O(n \log n)\). The expression (@showTreeWith hang wide map@) shows
 the tree that implements the set. If @hang@ is
 @True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If
 @wide@ is 'True', an extra wide version is shown.

> Set> putStrLn $ showTreeWith True False $ fromDistinctAscList [1..5]
> 4
> +--2
> |  +--1
> |  +--3
> +--5
>
> Set> putStrLn $ showTreeWith True True $ fromDistinctAscList [1..5]
> 4
> |
> +--2
> |  |
> |  +--1
> |  |
> |  +--3
> |
> +--5
>
> Set> putStrLn $ showTreeWith False True $ fromDistinctAscList [1..5]
> +--5
> |
> 4
> |
> |  +--3
> |  |
> +--2
>    |
>    +--1

-}
showTreeWith :: Show a => Bool -> Bool -> Set a -> String
showTreeWith :: forall a. Show a => Bool -> Bool -> Set a -> [Char]
showTreeWith Bool
hang Bool
wide Set a
t
  | Bool
hang      = (Bool -> [[Char]] -> Set a -> ShowS
forall a. Show a => Bool -> [[Char]] -> Set a -> ShowS
showsTreeHang Bool
wide [] Set a
t) [Char]
""
  | Bool
otherwise = (Bool -> [[Char]] -> [[Char]] -> Set a -> ShowS
forall a. Show a => Bool -> [[Char]] -> [[Char]] -> Set a -> ShowS
showsTree Bool
wide [] [] Set a
t) [Char]
""

showsTree :: Show a => Bool -> [String] -> [String] -> Set a -> ShowS
showsTree :: forall a. Show a => Bool -> [[Char]] -> [[Char]] -> Set a -> ShowS
showsTree Bool
wide [[Char]]
lbars [[Char]]
rbars Set a
t
  = case Set a
t of
      Set a
Tip -> [[Char]] -> ShowS
showsBars [[Char]]
lbars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
"|\n"
      Bin Size
_ a
x Set a
Tip Set a
Tip
          -> [[Char]] -> ShowS
showsBars [[Char]]
lbars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> ShowS
forall a. Show a => a -> ShowS
shows a
x ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
"\n"
      Bin Size
_ a
x Set a
l Set a
r
          -> Bool -> [[Char]] -> [[Char]] -> Set a -> ShowS
forall a. Show a => Bool -> [[Char]] -> [[Char]] -> Set a -> ShowS
showsTree Bool
wide ([[Char]] -> [[Char]]
withBar [[Char]]
rbars) ([[Char]] -> [[Char]]
withEmpty [[Char]]
rbars) Set a
r ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
             Bool -> [[Char]] -> ShowS
showWide Bool
wide [[Char]]
rbars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
             [[Char]] -> ShowS
showsBars [[Char]]
lbars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> ShowS
forall a. Show a => a -> ShowS
shows a
x ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
"\n" ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
             Bool -> [[Char]] -> ShowS
showWide Bool
wide [[Char]]
lbars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
             Bool -> [[Char]] -> [[Char]] -> Set a -> ShowS
forall a. Show a => Bool -> [[Char]] -> [[Char]] -> Set a -> ShowS
showsTree Bool
wide ([[Char]] -> [[Char]]
withEmpty [[Char]]
lbars) ([[Char]] -> [[Char]]
withBar [[Char]]
lbars) Set a
l

showsTreeHang :: Show a => Bool -> [String] -> Set a -> ShowS
showsTreeHang :: forall a. Show a => Bool -> [[Char]] -> Set a -> ShowS
showsTreeHang Bool
wide [[Char]]
bars Set a
t
  = case Set a
t of
      Set a
Tip -> [[Char]] -> ShowS
showsBars [[Char]]
bars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
"|\n"
      Bin Size
_ a
x Set a
Tip Set a
Tip
          -> [[Char]] -> ShowS
showsBars [[Char]]
bars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> ShowS
forall a. Show a => a -> ShowS
shows a
x ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
"\n"
      Bin Size
_ a
x Set a
l Set a
r
          -> [[Char]] -> ShowS
showsBars [[Char]]
bars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> ShowS
forall a. Show a => a -> ShowS
shows a
x ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
"\n" ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
             Bool -> [[Char]] -> ShowS
showWide Bool
wide [[Char]]
bars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
             Bool -> [[Char]] -> Set a -> ShowS
forall a. Show a => Bool -> [[Char]] -> Set a -> ShowS
showsTreeHang Bool
wide ([[Char]] -> [[Char]]
withBar [[Char]]
bars) Set a
l ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
             Bool -> [[Char]] -> ShowS
showWide Bool
wide [[Char]]
bars ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
             Bool -> [[Char]] -> Set a -> ShowS
forall a. Show a => Bool -> [[Char]] -> Set a -> ShowS
showsTreeHang Bool
wide ([[Char]] -> [[Char]]
withEmpty [[Char]]
bars) Set a
r

showWide :: Bool -> [String] -> String -> String
showWide :: Bool -> [[Char]] -> ShowS
showWide Bool
wide [[Char]]
bars
  | Bool
wide      = [Char] -> ShowS
showString ([[Char]] -> [Char]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat ([[Char]] -> [[Char]]
forall a. [a] -> [a]
reverse [[Char]]
bars)) ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
"|\n"
  | Bool
otherwise = ShowS
forall a. a -> a
id

showsBars :: [String] -> ShowS
showsBars :: [[Char]] -> ShowS
showsBars [[Char]]
bars
  = case [[Char]]
bars of
      [] -> ShowS
forall a. a -> a
id
      [Char]
_ : [[Char]]
tl -> [Char] -> ShowS
showString ([[Char]] -> [Char]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat ([[Char]] -> [[Char]]
forall a. [a] -> [a]
reverse [[Char]]
tl)) ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> ShowS
showString [Char]
node

node :: String
node :: [Char]
node           = [Char]
"+--"

withBar, withEmpty :: [String] -> [String]
withBar :: [[Char]] -> [[Char]]
withBar [[Char]]
bars   = [Char]
"|  "[Char] -> [[Char]] -> [[Char]]
forall a. a -> [a] -> [a]
:[[Char]]
bars
withEmpty :: [[Char]] -> [[Char]]
withEmpty [[Char]]
bars = [Char]
"   "[Char] -> [[Char]] -> [[Char]]
forall a. a -> [a] -> [a]
:[[Char]]
bars

{--------------------------------------------------------------------
  Assertions
--------------------------------------------------------------------}
-- | \(O(n)\). Test if the internal set structure is valid.
valid :: Ord a => Set a -> Bool
valid :: forall a. Ord a => Set a -> Bool
valid Set a
t
  = Set a -> Bool
forall a. Set a -> Bool
balanced Set a
t Bool -> Bool -> Bool
&& Set a -> Bool
forall a. Ord a => Set a -> Bool
ordered Set a
t Bool -> Bool -> Bool
&& Set a -> Bool
forall a. Set a -> Bool
validsize Set a
t

ordered :: Ord a => Set a -> Bool
ordered :: forall a. Ord a => Set a -> Bool
ordered Set a
t
  = (a -> Bool) -> (a -> Bool) -> Set a -> Bool
forall {t}. Ord t => (t -> Bool) -> (t -> Bool) -> Set t -> Bool
bounded (Bool -> a -> Bool
forall a b. a -> b -> a
const Bool
True) (Bool -> a -> Bool
forall a b. a -> b -> a
const Bool
True) Set a
t
  where
    bounded :: (t -> Bool) -> (t -> Bool) -> Set t -> Bool
bounded t -> Bool
lo t -> Bool
hi Set t
t'
      = case Set t
t' of
          Set t
Tip         -> Bool
True
          Bin Size
_ t
x Set t
l Set t
r -> (t -> Bool
lo t
x) Bool -> Bool -> Bool
&& (t -> Bool
hi t
x) Bool -> Bool -> Bool
&& (t -> Bool) -> (t -> Bool) -> Set t -> Bool
bounded t -> Bool
lo (t -> t -> Bool
forall a. Ord a => a -> a -> Bool
<t
x) Set t
l Bool -> Bool -> Bool
&& (t -> Bool) -> (t -> Bool) -> Set t -> Bool
bounded (t -> t -> Bool
forall a. Ord a => a -> a -> Bool
>t
x) t -> Bool
hi Set t
r

balanced :: Set a -> Bool
balanced :: forall a. Set a -> Bool
balanced Set a
t
  = case Set a
t of
      Set a
Tip         -> Bool
True
      Bin Size
_ a
_ Set a
l Set a
r -> (Set a -> Size
forall a. Set a -> Size
size Set a
l Size -> Size -> Size
forall a. Num a => a -> a -> a
+ Set a -> Size
forall a. Set a -> Size
size Set a
r Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Size
1 Bool -> Bool -> Bool
|| (Set a -> Size
forall a. Set a -> Size
size Set a
l Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Set a -> Size
forall a. Set a -> Size
size Set a
r Bool -> Bool -> Bool
&& Set a -> Size
forall a. Set a -> Size
size Set a
r Size -> Size -> Bool
forall a. Ord a => a -> a -> Bool
<= Size
deltaSize -> Size -> Size
forall a. Num a => a -> a -> a
*Set a -> Size
forall a. Set a -> Size
size Set a
l)) Bool -> Bool -> Bool
&&
                     Set a -> Bool
forall a. Set a -> Bool
balanced Set a
l Bool -> Bool -> Bool
&& Set a -> Bool
forall a. Set a -> Bool
balanced Set a
r

validsize :: Set a -> Bool
validsize :: forall a. Set a -> Bool
validsize Set a
t
  = (Set a -> Maybe Size
forall {a}. Set a -> Maybe Size
realsize Set a
t Maybe Size -> Maybe Size -> Bool
forall a. Eq a => a -> a -> Bool
== Size -> Maybe Size
forall a. a -> Maybe a
Just (Set a -> Size
forall a. Set a -> Size
size Set a
t))
  where
    realsize :: Set a -> Maybe Size
realsize Set a
t'
      = case Set a
t' of
          Set a
Tip          -> Size -> Maybe Size
forall a. a -> Maybe a
Just Size
0
          Bin Size
sz a
_ Set a
l Set a
r -> case (Set a -> Maybe Size
realsize Set a
l,Set a -> Maybe Size
realsize Set a
r) of
                            (Just Size
n,Just Size
m)  | Size
nSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
mSize -> Size -> Size
forall a. Num a => a -> a -> a
+Size
1 Size -> Size -> Bool
forall a. Eq a => a -> a -> Bool
== Size
sz  -> Size -> Maybe Size
forall a. a -> Maybe a
Just Size
sz
                            (Maybe Size, Maybe Size)
_                -> Maybe Size
forall a. Maybe a
Nothing

--------------------------------------------------------------------

-- Note [fromDistinctAscList implementation]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- fromDistinctAscList is implemented by building up perfectly balanced trees
-- while we consume elements from the list one by one. A stack of
-- (root, perfectly balanced left branch) pairs is maintained, in increasing
-- order of size from top to bottom.
--
-- When we get an element from the list, we attempt to link it as the right
-- branch with the top (root, perfect left branch) of the stack to create a new
-- perfect tree. We can only do this if the left branch has size 1. If we link
-- it, we get a perfect tree of size 3. We repeat this process, merging with the
-- top of the stack as long as the sizes match. When we can't link any more, the
-- perfect tree we built so far is a potential left branch. The next element
-- we find becomes the root, and we push this new (root, left branch) on the
-- stack.
--
-- When we are out of elements, we link the (root, left branch)s in the stack
-- top to bottom to get the final tree.
--
-- How long does this take? We do O(1) work per element excluding the links.
-- Over n elements, we build trees with at most n nodes total, and each link is
-- done in O(1) using `bin`. The final linking of the stack is done in O(log n)
-- using `link`  (proof below). The total time is thus O(n).
--
-- Additionally, the implemention is written using foldl' over the input list,
-- which makes it participate as a good consumer in list fusion.
--
-- fromDistinctDescList is implemented similarly, adapted for left and right
-- sides being swapped.
--
-- ~~~
--
-- A `link` operation links trees L and R with a root in
-- O(|log(size(L)) - log(size(R))|). Let's say there are m (root, tree) in the
-- stack, the size of the ith tree being 2^{k_i} - 1. We also know that
-- k_i > k_j for i > j, and n = \sum_{i=1}^m 2^{k_i}. With this information, we
-- can calculate the total time to link everything on the stack:
--
--   O(\sum_{i=2}^m |log(2^{k_i} - 1) - log(\sum_{j=1}^{i-1} 2^{k_j})|)
-- = O(\sum_{i=2}^m log(2^{k_i} - 1) - log(\sum_{j=1}^{i-1} 2^{k_j}))
-- = O(\sum_{i=2}^m log(2^{k_i} - 1) - log(2^{k_{i-1}}))
-- = O(\sum_{i=2}^m k_i - k_{i-1})
-- = O(k_m - k_1)
-- = O(log n)