{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
-- |
-- Module      : Data.Vector.Primitive
-- Copyright   : (c) Roman Leshchinskiy 2008-2010
--                   Alexey Kuleshevich 2020-2022
--                   Aleksey Khudyakov 2020-2022
--                   Andrew Lelechenko 2020-2022
-- License     : BSD-style
--
-- Maintainer  : Haskell Libraries Team <libraries@haskell.org>
-- Stability   : experimental
-- Portability : non-portable
--
-- Unboxed vectors of primitive types. The use of this module is not
-- recommended except in very special cases. Adaptive unboxed vectors defined
-- in "Data.Vector.Unboxed" are significantly more flexible at no performance
-- cost.

module Data.Vector.Primitive (
  -- * Primitive vectors
  Vector(..), MVector(..),

  -- * Accessors

  -- ** Length information
  length, null,

  -- ** Indexing
  (!), (!?), head, last,
  unsafeIndex, unsafeHead, unsafeLast,

  -- ** Monadic indexing
  indexM, headM, lastM,
  unsafeIndexM, unsafeHeadM, unsafeLastM,

  -- ** Extracting subvectors (slicing)
  slice, init, tail, take, drop, splitAt, uncons, unsnoc,
  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,

  -- * Construction

  -- ** Initialisation
  empty, singleton, replicate, generate, iterateN,

  -- ** Monadic initialisation
  replicateM, generateM, iterateNM, create, createT,

  -- ** Unfolding
  unfoldr, unfoldrN, unfoldrExactN,
  unfoldrM, unfoldrNM, unfoldrExactNM,
  constructN, constructrN,

  -- ** Enumeration
  enumFromN, enumFromStepN, enumFromTo, enumFromThenTo,

  -- ** Concatenation
  cons, snoc, (++), concat,

  -- ** Restricting memory usage
  force,

  -- * Modifying vectors

  -- ** Bulk updates
  (//), update_,
  unsafeUpd, unsafeUpdate_,

  -- ** Accumulations
  accum, accumulate_,
  unsafeAccum, unsafeAccumulate_,

  -- ** Permutations
  reverse, backpermute, unsafeBackpermute,

  -- ** Safe destructive updates
  modify,

  -- * Elementwise operations

  -- ** Mapping
  map, imap, concatMap,

  -- ** Monadic mapping
  mapM, imapM, mapM_, imapM_, forM, forM_,
  iforM, iforM_,

  -- ** Zipping
  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
  izipWith, izipWith3, izipWith4, izipWith5, izipWith6,

  -- ** Monadic zipping
  zipWithM, izipWithM, zipWithM_, izipWithM_,

  -- * Working with predicates

  -- ** Filtering
  filter, ifilter, filterM, uniq,
  mapMaybe, imapMaybe,
  mapMaybeM, imapMaybeM,
  takeWhile, dropWhile,

  -- ** Partitioning
  partition, unstablePartition, partitionWith, span, break, groupBy, group,

  -- ** Searching
  elem, notElem, find, findIndex, findIndexR, findIndices, elemIndex, elemIndices,

  -- * Folding
  foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1',
  ifoldl, ifoldl', ifoldr, ifoldr',
  foldMap, foldMap',

  -- ** Specialised folds
  all, any,
  sum, product,
  maximum, maximumBy, maximumOn,
  minimum, minimumBy, minimumOn,
  minIndex, minIndexBy, maxIndex, maxIndexBy,

  -- ** Monadic folds
  foldM, ifoldM, foldM', ifoldM',
  fold1M, fold1M', foldM_, ifoldM_,
  foldM'_, ifoldM'_, fold1M_, fold1M'_,

  -- * Scans
  prescanl, prescanl',
  postscanl, postscanl',
  scanl, scanl', scanl1, scanl1',
  iscanl, iscanl',
  prescanr, prescanr',
  postscanr, postscanr',
  scanr, scanr', scanr1, scanr1',
  iscanr, iscanr',

  -- ** Comparisons
  eqBy, cmpBy,

  -- * Conversions

  -- ** Lists
  toList, fromList, fromListN,

  -- ** Other vector types
  G.convert, unsafeCast,
  unsafeCoerceVector,

  -- ** Mutable vectors
  freeze, thaw, copy, unsafeFreeze, unsafeThaw, unsafeCopy,

  -- ** Re-exports
  Prim
) where

import qualified Data.Vector.Generic           as G
import           Data.Vector.Primitive.Mutable ( MVector(..) )
import           Data.Vector.Internal.Check
import qualified Data.Vector.Fusion.Bundle as Bundle
import           Data.Primitive.ByteArray
import           Data.Primitive ( Prim, sizeOf )

import Control.DeepSeq ( NFData(rnf)
#if MIN_VERSION_deepseq(1,4,3)
                       , NFData1(liftRnf)
#endif
                       )

import Control.Monad ( liftM )
import Control.Monad.ST ( ST )
import Control.Monad.Primitive

import Prelude
  ( Eq, Ord, Num, Enum, Monoid, Traversable, Monad, Read, Show, Bool, Ordering(..), Int, Maybe, Either
  , compare, mempty, mappend, mconcat, showsPrec, return, otherwise, seq, error, undefined
  , (+), (*), (<), (<=), (>), (>=), (==), (/=), ($!) )

import Data.Typeable  ( Typeable )
import Data.Data      ( Data(..) )
import Text.Read      ( Read(..), readListPrecDefault )
import Data.Semigroup ( Semigroup(..) )

import Data.Coerce
import Unsafe.Coerce
import qualified GHC.Exts as Exts

type role Vector nominal

-- | /O(1)/ Unsafely coerce an immutable vector from one element type to another,
-- representationally equal type. The operation just changes the type of the
-- underlying pointer and does not modify the elements.
--
-- This is marginally safer than 'unsafeCast', since this function imposes an
-- extra 'Coercible' constraint. The constraint guarantees that the element types
-- are representationally equal. It however cannot guarantee
-- that their respective 'Prim' instances are compatible.
unsafeCoerceVector :: Coercible a b => Vector a -> Vector b
unsafeCoerceVector :: forall a b. Coercible a b => Vector a -> Vector b
unsafeCoerceVector = Vector a -> Vector b
forall a b. a -> b
unsafeCoerce

-- | Unboxed vectors of primitive types.
data Vector a = Vector {-# UNPACK #-} !Int       -- ^ offset
                       {-# UNPACK #-} !Int       -- ^ length
                       {-# UNPACK #-} !ByteArray -- ^ underlying byte array
  deriving ( Typeable )

instance NFData (Vector a) where
  rnf :: Vector a -> ()
rnf (Vector Int
_ Int
_ ByteArray
_) = ()

#if MIN_VERSION_deepseq(1,4,3)
-- | @since 0.12.1.0
instance NFData1 Vector where
  liftRnf :: forall a. (a -> ()) -> Vector a -> ()
liftRnf a -> ()
_ (Vector Int
_ Int
_ ByteArray
_) = ()
#endif

instance (Show a, Prim a) => Show (Vector a) where
  showsPrec :: Int -> Vector a -> ShowS
showsPrec = Int -> Vector a -> ShowS
forall (v :: * -> *) a. (Vector v a, Show a) => Int -> v a -> ShowS
G.showsPrec

instance (Read a, Prim a) => Read (Vector a) where
  readPrec :: ReadPrec (Vector a)
readPrec = ReadPrec (Vector a)
forall (v :: * -> *) a. (Vector v a, Read a) => ReadPrec (v a)
G.readPrec
  readListPrec :: ReadPrec [Vector a]
readListPrec = ReadPrec [Vector a]
forall a. Read a => ReadPrec [a]
readListPrecDefault

instance (Data a, Prim a) => Data (Vector a) where
  gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Vector a -> c (Vector a)
gfoldl       = (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Vector a -> c (Vector a)
forall (v :: * -> *) a (c :: * -> *).
(Vector v a, Data a) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> v a -> c (v a)
G.gfoldl
  toConstr :: Vector a -> Constr
toConstr Vector a
_   = String -> Constr
G.mkVecConstr String
"Data.Vector.Primitive.Vector"
  gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Vector a)
gunfold      = (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Vector a)
forall (v :: * -> *) a (c :: * -> *).
(Vector v a, Data a, HasCallStack) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (v a)
G.gunfold
  dataTypeOf :: Vector a -> DataType
dataTypeOf Vector a
_ = String -> DataType
G.mkVecType String
"Data.Vector.Primitive.Vector"
  dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Vector a))
dataCast1    = (forall d. Data d => c (t d)) -> Maybe (c (Vector a))
forall (v :: * -> *) a (t :: * -> *) (c :: * -> *).
(Vector v a, Data a, Typeable v, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (v a))
G.dataCast


type instance G.Mutable Vector = MVector

instance Prim a => G.Vector Vector a where
  {-# INLINE basicUnsafeFreeze #-}
  basicUnsafeFreeze :: forall s. Mutable Vector s a -> ST s (Vector a)
basicUnsafeFreeze (MVector Int
i Int
n MutableByteArray s
marr)
    = Int -> Int -> ByteArray -> Vector a
forall a. Int -> Int -> ByteArray -> Vector a
Vector Int
i Int
n (ByteArray -> Vector a) -> ST s ByteArray -> ST s (Vector a)
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
`liftM` MutableByteArray (PrimState (ST s)) -> ST s ByteArray
forall (m :: * -> *).
PrimMonad m =>
MutableByteArray (PrimState m) -> m ByteArray
unsafeFreezeByteArray MutableByteArray s
MutableByteArray (PrimState (ST s))
marr

  {-# INLINE basicUnsafeThaw #-}
  basicUnsafeThaw :: forall s. Vector a -> ST s (Mutable Vector s a)
basicUnsafeThaw (Vector Int
i Int
n ByteArray
arr)
    = Int -> Int -> MutableByteArray s -> MVector s a
forall s a. Int -> Int -> MutableByteArray s -> MVector s a
MVector Int
i Int
n (MutableByteArray s -> MVector s a)
-> ST s (MutableByteArray s) -> ST s (MVector s a)
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
`liftM` ByteArray -> ST s (MutableByteArray (PrimState (ST s)))
forall (m :: * -> *).
PrimMonad m =>
ByteArray -> m (MutableByteArray (PrimState m))
unsafeThawByteArray ByteArray
arr

  {-# INLINE basicLength #-}
  basicLength :: Vector a -> Int
basicLength (Vector Int
_ Int
n ByteArray
_) = Int
n

  {-# INLINE basicUnsafeSlice #-}
  basicUnsafeSlice :: Int -> Int -> Vector a -> Vector a
basicUnsafeSlice Int
j Int
n (Vector Int
i Int
_ ByteArray
arr) = Int -> Int -> ByteArray -> Vector a
forall a. Int -> Int -> ByteArray -> Vector a
Vector (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
j) Int
n ByteArray
arr

  {-# INLINE basicUnsafeIndexM #-}
  basicUnsafeIndexM :: Vector a -> Int -> Box a
basicUnsafeIndexM (Vector Int
i Int
_ ByteArray
arr) Int
j = a -> Box a
forall a. a -> Box a
forall (m :: * -> *) a. Monad m => a -> m a
return (a -> Box a) -> a -> Box a
forall a b. (a -> b) -> a -> b
$! ByteArray -> Int -> a
forall a. Prim a => ByteArray -> Int -> a
indexByteArray ByteArray
arr (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
j)

  {-# INLINE basicUnsafeCopy #-}
  basicUnsafeCopy :: forall s. Mutable Vector s a -> Vector a -> ST s ()
basicUnsafeCopy (MVector Int
i Int
n MutableByteArray s
dst) (Vector Int
j Int
_ ByteArray
src)
    = MutableByteArray (PrimState (ST s))
-> Int -> ByteArray -> Int -> Int -> ST s ()
forall (m :: * -> *).
PrimMonad m =>
MutableByteArray (PrimState m)
-> Int -> ByteArray -> Int -> Int -> m ()
copyByteArray MutableByteArray s
MutableByteArray (PrimState (ST s))
dst (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
sz) ByteArray
src (Int
jInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
sz) (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
sz)
    where
      sz :: Int
sz = a -> Int
forall a. Prim a => a -> Int
sizeOf (a
forall a. HasCallStack => a
undefined :: a)

  {-# INLINE elemseq #-}
  elemseq :: forall b. Vector a -> a -> b -> b
elemseq Vector a
_ = a -> b -> b
forall a b. a -> b -> b
seq

-- See http://trac.haskell.org/vector/ticket/12
instance (Prim a, Eq a) => Eq (Vector a) where
  {-# INLINE (==) #-}
  Vector a
xs == :: Vector a -> Vector a -> Bool
== Vector a
ys = Bundle Vector a -> Bundle Vector a -> Bool
forall a (v :: * -> *). Eq a => Bundle v a -> Bundle v a -> Bool
Bundle.eq (Vector a -> Bundle Vector a
forall (v :: * -> *) a. Vector v a => v a -> Bundle v a
G.stream Vector a
xs) (Vector a -> Bundle Vector a
forall (v :: * -> *) a. Vector v a => v a -> Bundle v a
G.stream Vector a
ys)

-- See http://trac.haskell.org/vector/ticket/12
instance (Prim a, Ord a) => Ord (Vector a) where
  {-# INLINE compare #-}
  compare :: Vector a -> Vector a -> Ordering
compare Vector a
xs Vector a
ys = Bundle Vector a -> Bundle Vector a -> Ordering
forall a (v :: * -> *).
Ord a =>
Bundle v a -> Bundle v a -> Ordering
Bundle.cmp (Vector a -> Bundle Vector a
forall (v :: * -> *) a. Vector v a => v a -> Bundle v a
G.stream Vector a
xs) (Vector a -> Bundle Vector a
forall (v :: * -> *) a. Vector v a => v a -> Bundle v a
G.stream Vector a
ys)

  {-# INLINE (<) #-}
  Vector a
xs < :: Vector a -> Vector a -> Bool
< Vector a
ys = Bundle Vector a -> Bundle Vector a -> Ordering
forall a (v :: * -> *).
Ord a =>
Bundle v a -> Bundle v a -> Ordering
Bundle.cmp (Vector a -> Bundle Vector a
forall (v :: * -> *) a. Vector v a => v a -> Bundle v a
G.stream Vector a
xs) (Vector a -> Bundle Vector a
forall (v :: * -> *) a. Vector v a => v a -> Bundle v a
G.stream Vector a
ys) Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
== Ordering
LT

  {-# INLINE (<=) #-}
  Vector a
xs <= :: Vector a -> Vector a -> Bool
<= Vector a
ys = Bundle Vector a -> Bundle Vector a -> Ordering
forall a (v :: * -> *).
Ord a =>
Bundle v a -> Bundle v a -> Ordering
Bundle.cmp (Vector a -> Bundle Vector a
forall (v :: * -> *) a. Vector v a => v a -> Bundle v a
G.stream Vector a
xs) (Vector a -> Bundle Vector a
forall (v :: * -> *) a. Vector v a => v a -> Bundle v a
G.stream Vector a
ys) Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
/= Ordering
GT

  {-# INLINE (>) #-}
  Vector a
xs > :: Vector a -> Vector a -> Bool
> Vector a
ys = Bundle Vector a -> Bundle Vector a -> Ordering
forall a (v :: * -> *).
Ord a =>
Bundle v a -> Bundle v a -> Ordering
Bundle.cmp (Vector a -> Bundle Vector a
forall (v :: * -> *) a. Vector v a => v a -> Bundle v a
G.stream Vector a
xs) (Vector a -> Bundle Vector a
forall (v :: * -> *) a. Vector v a => v a -> Bundle v a
G.stream Vector a
ys) Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
== Ordering
GT

  {-# INLINE (>=) #-}
  Vector a
xs >= :: Vector a -> Vector a -> Bool
>= Vector a
ys = Bundle Vector a -> Bundle Vector a -> Ordering
forall a (v :: * -> *).
Ord a =>
Bundle v a -> Bundle v a -> Ordering
Bundle.cmp (Vector a -> Bundle Vector a
forall (v :: * -> *) a. Vector v a => v a -> Bundle v a
G.stream Vector a
xs) (Vector a -> Bundle Vector a
forall (v :: * -> *) a. Vector v a => v a -> Bundle v a
G.stream Vector a
ys) Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
/= Ordering
LT

instance Prim a => Semigroup (Vector a) where
  {-# INLINE (<>) #-}
  <> :: Vector a -> Vector a -> Vector a
(<>) = Vector a -> Vector a -> Vector a
forall a. Prim a => Vector a -> Vector a -> Vector a
(++)

  {-# INLINE sconcat #-}
  sconcat :: NonEmpty (Vector a) -> Vector a
sconcat = NonEmpty (Vector a) -> Vector a
forall (v :: * -> *) a. Vector v a => NonEmpty (v a) -> v a
G.concatNE

instance Prim a => Monoid (Vector a) where
  {-# INLINE mempty #-}
  mempty :: Vector a
mempty = Vector a
forall a. Prim a => Vector a
empty

  {-# INLINE mappend #-}
  mappend :: Vector a -> Vector a -> Vector a
mappend = Vector a -> Vector a -> Vector a
forall a. Semigroup a => a -> a -> a
(<>)

  {-# INLINE mconcat #-}
  mconcat :: [Vector a] -> Vector a
mconcat = [Vector a] -> Vector a
forall a. Prim a => [Vector a] -> Vector a
concat

instance Prim a => Exts.IsList (Vector a) where
  type Item (Vector a) = a
  fromList :: [Item (Vector a)] -> Vector a
fromList = [a] -> Vector a
[Item (Vector a)] -> Vector a
forall a. Prim a => [a] -> Vector a
fromList
  fromListN :: Int -> [Item (Vector a)] -> Vector a
fromListN = Int -> [a] -> Vector a
Int -> [Item (Vector a)] -> Vector a
forall a. Prim a => Int -> [a] -> Vector a
fromListN
  toList :: Vector a -> [Item (Vector a)]
toList = Vector a -> [a]
Vector a -> [Item (Vector a)]
forall a. Prim a => Vector a -> [a]
toList


-- Length
-- ------

-- | /O(1)/ Yield the length of the vector.
length :: Prim a => Vector a -> Int
{-# INLINE length #-}
length :: forall a. Prim a => Vector a -> Int
length = Vector a -> Int
forall (v :: * -> *) a. Vector v a => v a -> Int
G.length

-- | /O(1)/ Test whether a vector is empty.
null :: Prim a => Vector a -> Bool
{-# INLINE null #-}
null :: forall a. Prim a => Vector a -> Bool
null = Vector a -> Bool
forall (v :: * -> *) a. Vector v a => v a -> Bool
G.null

-- Indexing
-- --------

-- | O(1) Indexing.
(!) :: Prim a => Vector a -> Int -> a
{-# INLINE (!) #-}
! :: forall a. Prim a => Vector a -> Int -> a
(!) = Vector a -> Int -> a
forall (v :: * -> *) a.
(HasCallStack, Vector v a) =>
v a -> Int -> a
(G.!)

-- | O(1) Safe indexing.
(!?) :: Prim a => Vector a -> Int -> Maybe a
{-# INLINE (!?) #-}
!? :: forall a. Prim a => Vector a -> Int -> Maybe a
(!?) = Vector a -> Int -> Maybe a
forall (v :: * -> *) a. Vector v a => v a -> Int -> Maybe a
(G.!?)

-- | /O(1)/ First element.
head :: Prim a => Vector a -> a
{-# INLINE head #-}
head :: forall a. Prim a => Vector a -> a
head = Vector a -> a
forall (v :: * -> *) a. Vector v a => v a -> a
G.head

-- | /O(1)/ Last element.
last :: Prim a => Vector a -> a
{-# INLINE last #-}
last :: forall a. Prim a => Vector a -> a
last = Vector a -> a
forall (v :: * -> *) a. Vector v a => v a -> a
G.last

-- | /O(1)/ Unsafe indexing without bounds checking.
unsafeIndex :: Prim a => Vector a -> Int -> a
{-# INLINE unsafeIndex #-}
unsafeIndex :: forall a. Prim a => Vector a -> Int -> a
unsafeIndex = Vector a -> Int -> a
forall (v :: * -> *) a. Vector v a => v a -> Int -> a
G.unsafeIndex

-- | /O(1)/ First element, without checking if the vector is empty.
unsafeHead :: Prim a => Vector a -> a
{-# INLINE unsafeHead #-}
unsafeHead :: forall a. Prim a => Vector a -> a
unsafeHead = Vector a -> a
forall (v :: * -> *) a. Vector v a => v a -> a
G.unsafeHead

-- | /O(1)/ Last element, without checking if the vector is empty.
unsafeLast :: Prim a => Vector a -> a
{-# INLINE unsafeLast #-}
unsafeLast :: forall a. Prim a => Vector a -> a
unsafeLast = Vector a -> a
forall (v :: * -> *) a. Vector v a => v a -> a
G.unsafeLast

-- Monadic indexing
-- ----------------

-- | /O(1)/ Indexing in a monad.
--
-- The monad allows operations to be strict in the vector when necessary.
-- Suppose vector copying is implemented like this:
--
-- > copy mv v = ... write mv i (v ! i) ...
--
-- For lazy vectors, @v ! i@ would not be evaluated which means that @mv@
-- would unnecessarily retain a reference to @v@ in each element written.
--
-- With 'indexM', copying can be implemented like this instead:
--
-- > copy mv v = ... do
-- >                   x <- indexM v i
-- >                   write mv i x
--
-- Here, no references to @v@ are retained because indexing (but /not/ the
-- element) is evaluated eagerly.
indexM :: (Prim a, Monad m) => Vector a -> Int -> m a
{-# INLINE indexM #-}
indexM :: forall a (m :: * -> *). (Prim a, Monad m) => Vector a -> Int -> m a
indexM = Vector a -> Int -> m a
forall (v :: * -> *) a (m :: * -> *).
(HasCallStack, Vector v a, Monad m) =>
v a -> Int -> m a
G.indexM

-- | /O(1)/ First element of a vector in a monad. See 'indexM' for an
-- explanation of why this is useful.
headM :: (Prim a, Monad m) => Vector a -> m a
{-# INLINE headM #-}
headM :: forall a (m :: * -> *). (Prim a, Monad m) => Vector a -> m a
headM = Vector a -> m a
forall (v :: * -> *) a (m :: * -> *).
(Vector v a, Monad m) =>
v a -> m a
G.headM

-- | /O(1)/ Last element of a vector in a monad. See 'indexM' for an
-- explanation of why this is useful.
lastM :: (Prim a, Monad m) => Vector a -> m a
{-# INLINE lastM #-}
lastM :: forall a (m :: * -> *). (Prim a, Monad m) => Vector a -> m a
lastM = Vector a -> m a
forall (v :: * -> *) a (m :: * -> *).
(Vector v a, Monad m) =>
v a -> m a
G.lastM

-- | /O(1)/ Indexing in a monad, without bounds checks. See 'indexM' for an
-- explanation of why this is useful.
unsafeIndexM :: (Prim a, Monad m) => Vector a -> Int -> m a
{-# INLINE unsafeIndexM #-}
unsafeIndexM :: forall a (m :: * -> *). (Prim a, Monad m) => Vector a -> Int -> m a
unsafeIndexM = Vector a -> Int -> m a
forall (v :: * -> *) a (m :: * -> *).
(Vector v a, Monad m) =>
v a -> Int -> m a
G.unsafeIndexM

-- | /O(1)/ First element in a monad, without checking for empty vectors.
-- See 'indexM' for an explanation of why this is useful.
unsafeHeadM :: (Prim a, Monad m) => Vector a -> m a
{-# INLINE unsafeHeadM #-}
unsafeHeadM :: forall a (m :: * -> *). (Prim a, Monad m) => Vector a -> m a
unsafeHeadM = Vector a -> m a
forall (v :: * -> *) a (m :: * -> *).
(Vector v a, Monad m) =>
v a -> m a
G.unsafeHeadM

-- | /O(1)/ Last element in a monad, without checking for empty vectors.
-- See 'indexM' for an explanation of why this is useful.
unsafeLastM :: (Prim a, Monad m) => Vector a -> m a
{-# INLINE unsafeLastM #-}
unsafeLastM :: forall a (m :: * -> *). (Prim a, Monad m) => Vector a -> m a
unsafeLastM = Vector a -> m a
forall (v :: * -> *) a (m :: * -> *).
(Vector v a, Monad m) =>
v a -> m a
G.unsafeLastM

-- Extracting subvectors (slicing)
-- -------------------------------

-- | /O(1)/ Yield a slice of the vector without copying it. The vector must
-- contain at least @i+n@ elements.
slice :: Prim a
      => Int   -- ^ @i@ starting index
      -> Int   -- ^ @n@ length
      -> Vector a
      -> Vector a
{-# INLINE slice #-}
slice :: forall a. Prim a => Int -> Int -> Vector a -> Vector a
slice = Int -> Int -> Vector a -> Vector a
forall (v :: * -> *) a.
(HasCallStack, Vector v a) =>
Int -> Int -> v a -> v a
G.slice

-- | /O(1)/ Yield all but the last element without copying. The vector may not
-- be empty.
init :: Prim a => Vector a -> Vector a
{-# INLINE init #-}
init :: forall a. Prim a => Vector a -> Vector a
init = Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => v a -> v a
G.init

-- | /O(1)/ Yield all but the first element without copying. The vector may not
-- be empty.
tail :: Prim a => Vector a -> Vector a
{-# INLINE tail #-}
tail :: forall a. Prim a => Vector a -> Vector a
tail = Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => v a -> v a
G.tail

-- | /O(1)/ Yield at the first @n@ elements without copying. The vector may
-- contain less than @n@ elements, in which case it is returned unchanged.
take :: Prim a => Int -> Vector a -> Vector a
{-# INLINE take #-}
take :: forall a. Prim a => Int -> Vector a -> Vector a
take = Int -> Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => Int -> v a -> v a
G.take

-- | /O(1)/ Yield all but the first @n@ elements without copying. The vector may
-- contain less than @n@ elements, in which case an empty vector is returned.
drop :: Prim a => Int -> Vector a -> Vector a
{-# INLINE drop #-}
drop :: forall a. Prim a => Int -> Vector a -> Vector a
drop = Int -> Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => Int -> v a -> v a
G.drop

-- | /O(1)/ Yield the first @n@ elements paired with the remainder, without copying.
--
-- Note that @'splitAt' n v@ is equivalent to @('take' n v, 'drop' n v)@,
-- but slightly more efficient.
--
-- @since 0.7.1
splitAt :: Prim a => Int -> Vector a -> (Vector a, Vector a)
{-# INLINE splitAt #-}
splitAt :: forall a. Prim a => Int -> Vector a -> (Vector a, Vector a)
splitAt = Int -> Vector a -> (Vector a, Vector a)
forall (v :: * -> *) a. Vector v a => Int -> v a -> (v a, v a)
G.splitAt

-- | /O(1)/ Yield the 'head' and 'tail' of the vector, or 'Nothing' if
-- the vector is empty.
--
-- @since 0.12.2.0
uncons :: Prim a => Vector a -> Maybe (a, Vector a)
{-# INLINE uncons #-}
uncons :: forall a. Prim a => Vector a -> Maybe (a, Vector a)
uncons = Vector a -> Maybe (a, Vector a)
forall (v :: * -> *) a. Vector v a => v a -> Maybe (a, v a)
G.uncons

-- | /O(1)/ Yield the 'last' and 'init' of the vector, or 'Nothing' if
-- the vector is empty.
--
-- @since 0.12.2.0
unsnoc :: Prim a => Vector a -> Maybe (Vector a, a)
{-# INLINE unsnoc #-}
unsnoc :: forall a. Prim a => Vector a -> Maybe (Vector a, a)
unsnoc = Vector a -> Maybe (Vector a, a)
forall (v :: * -> *) a. Vector v a => v a -> Maybe (v a, a)
G.unsnoc

-- | /O(1)/ Yield a slice of the vector without copying. The vector must
-- contain at least @i+n@ elements, but this is not checked.
unsafeSlice :: Prim a => Int   -- ^ @i@ starting index
                       -> Int   -- ^ @n@ length
                       -> Vector a
                       -> Vector a
{-# INLINE unsafeSlice #-}
unsafeSlice :: forall a. Prim a => Int -> Int -> Vector a -> Vector a
unsafeSlice = Int -> Int -> Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => Int -> Int -> v a -> v a
G.unsafeSlice

-- | /O(1)/ Yield all but the last element without copying. The vector may not
-- be empty, but this is not checked.
unsafeInit :: Prim a => Vector a -> Vector a
{-# INLINE unsafeInit #-}
unsafeInit :: forall a. Prim a => Vector a -> Vector a
unsafeInit = Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => v a -> v a
G.unsafeInit

-- | /O(1)/ Yield all but the first element without copying. The vector may not
-- be empty, but this is not checked.
unsafeTail :: Prim a => Vector a -> Vector a
{-# INLINE unsafeTail #-}
unsafeTail :: forall a. Prim a => Vector a -> Vector a
unsafeTail = Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => v a -> v a
G.unsafeTail

-- | /O(1)/ Yield the first @n@ elements without copying. The vector must
-- contain at least @n@ elements, but this is not checked.
unsafeTake :: Prim a => Int -> Vector a -> Vector a
{-# INLINE unsafeTake #-}
unsafeTake :: forall a. Prim a => Int -> Vector a -> Vector a
unsafeTake = Int -> Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => Int -> v a -> v a
G.unsafeTake

-- | /O(1)/ Yield all but the first @n@ elements without copying. The vector
-- must contain at least @n@ elements, but this is not checked.
unsafeDrop :: Prim a => Int -> Vector a -> Vector a
{-# INLINE unsafeDrop #-}
unsafeDrop :: forall a. Prim a => Int -> Vector a -> Vector a
unsafeDrop = Int -> Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => Int -> v a -> v a
G.unsafeDrop

-- Initialisation
-- --------------

-- | /O(1)/ The empty vector.
empty :: Prim a => Vector a
{-# INLINE empty #-}
empty :: forall a. Prim a => Vector a
empty = Vector a
forall (v :: * -> *) a. Vector v a => v a
G.empty

-- | /O(1)/ A vector with exactly one element.
singleton :: Prim a => a -> Vector a
{-# INLINE singleton #-}
singleton :: forall a. Prim a => a -> Vector a
singleton = a -> Vector a
forall (v :: * -> *) a. Vector v a => a -> v a
G.singleton

-- | /O(n)/ A vector of the given length with the same value in each position.
replicate :: Prim a => Int -> a -> Vector a
{-# INLINE replicate #-}
replicate :: forall a. Prim a => Int -> a -> Vector a
replicate = Int -> a -> Vector a
forall (v :: * -> *) a. Vector v a => Int -> a -> v a
G.replicate

-- | /O(n)/ Construct a vector of the given length by applying the function to
-- each index.
generate :: Prim a => Int -> (Int -> a) -> Vector a
{-# INLINE generate #-}
generate :: forall a. Prim a => Int -> (Int -> a) -> Vector a
generate = Int -> (Int -> a) -> Vector a
forall (v :: * -> *) a. Vector v a => Int -> (Int -> a) -> v a
G.generate

-- | /O(n)/ Apply the function \(\max(n - 1, 0)\) times to an initial value, producing a vector
-- of length \(\max(n, 0)\). The 0th element will contain the initial value, which is why there
-- is one less function application than the number of elements in the produced vector.
--
-- \( \underbrace{x, f (x), f (f (x)), \ldots}_{\max(0,n)\rm{~elements}} \)
--
-- ===__Examples__
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.iterateN 0 undefined undefined :: VP.Vector Int
-- []
-- >>> VP.iterateN 26 succ 'a'
-- "abcdefghijklmnopqrstuvwxyz"
--
-- @since 0.7.1
iterateN :: Prim a => Int -> (a -> a) -> a -> Vector a
{-# INLINE iterateN #-}
iterateN :: forall a. Prim a => Int -> (a -> a) -> a -> Vector a
iterateN = Int -> (a -> a) -> a -> Vector a
forall (v :: * -> *) a. Vector v a => Int -> (a -> a) -> a -> v a
G.iterateN

-- Unfolding
-- ---------

-- | /O(n)/ Construct a vector by repeatedly applying the generator function
-- to a seed. The generator function yields 'Just' the next element and the
-- new seed or 'Nothing' if there are no more elements.
--
-- > unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10
-- >  = <10,9,8,7,6,5,4,3,2,1>
unfoldr :: Prim a => (b -> Maybe (a, b)) -> b -> Vector a
{-# INLINE unfoldr #-}
unfoldr :: forall a b. Prim a => (b -> Maybe (a, b)) -> b -> Vector a
unfoldr = (b -> Maybe (a, b)) -> b -> Vector a
forall (v :: * -> *) a b.
Vector v a =>
(b -> Maybe (a, b)) -> b -> v a
G.unfoldr

-- | /O(n)/ Construct a vector with at most @n@ elements by repeatedly applying
-- the generator function to a seed. The generator function yields 'Just' the
-- next element and the new seed or 'Nothing' if there are no more elements.
--
-- > unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8>
unfoldrN :: Prim a => Int -> (b -> Maybe (a, b)) -> b -> Vector a
{-# INLINE unfoldrN #-}
unfoldrN :: forall a b. Prim a => Int -> (b -> Maybe (a, b)) -> b -> Vector a
unfoldrN = Int -> (b -> Maybe (a, b)) -> b -> Vector a
forall (v :: * -> *) a b.
Vector v a =>
Int -> (b -> Maybe (a, b)) -> b -> v a
G.unfoldrN

-- | /O(n)/ Construct a vector with exactly @n@ elements by repeatedly applying
-- the generator function to a seed. The generator function yields the
-- next element and the new seed.
--
-- > unfoldrExactN 3 (\n -> (n,n-1)) 10 = <10,9,8>
--
-- @since 0.12.2.0
unfoldrExactN :: (Prim a) => Int -> (b -> (a, b)) -> b -> Vector a
{-# INLINE unfoldrExactN #-}
unfoldrExactN :: forall a b. Prim a => Int -> (b -> (a, b)) -> b -> Vector a
unfoldrExactN = Int -> (b -> (a, b)) -> b -> Vector a
forall (v :: * -> *) a b.
Vector v a =>
Int -> (b -> (a, b)) -> b -> v a
G.unfoldrExactN

-- | /O(n)/ Construct a vector by repeatedly applying the monadic
-- generator function to a seed. The generator function yields 'Just'
-- the next element and the new seed or 'Nothing' if there are no more
-- elements.
unfoldrM :: (Monad m, Prim a) => (b -> m (Maybe (a, b))) -> b -> m (Vector a)
{-# INLINE unfoldrM #-}
unfoldrM :: forall (m :: * -> *) a b.
(Monad m, Prim a) =>
(b -> m (Maybe (a, b))) -> b -> m (Vector a)
unfoldrM = (b -> m (Maybe (a, b))) -> b -> m (Vector a)
forall (m :: * -> *) (v :: * -> *) a b.
(Monad m, Vector v a) =>
(b -> m (Maybe (a, b))) -> b -> m (v a)
G.unfoldrM

-- | /O(n)/ Construct a vector by repeatedly applying the monadic
-- generator function to a seed. The generator function yields 'Just'
-- the next element and the new seed or 'Nothing' if there are no more
-- elements.
unfoldrNM :: (Monad m, Prim a) => Int -> (b -> m (Maybe (a, b))) -> b -> m (Vector a)
{-# INLINE unfoldrNM #-}
unfoldrNM :: forall (m :: * -> *) a b.
(Monad m, Prim a) =>
Int -> (b -> m (Maybe (a, b))) -> b -> m (Vector a)
unfoldrNM = Int -> (b -> m (Maybe (a, b))) -> b -> m (Vector a)
forall (m :: * -> *) (v :: * -> *) a b.
(Monad m, Vector v a) =>
Int -> (b -> m (Maybe (a, b))) -> b -> m (v a)
G.unfoldrNM

-- | /O(n)/ Construct a vector with exactly @n@ elements by repeatedly
-- applying the monadic generator function to a seed. The generator
-- function yields the next element and the new seed.
--
-- @since 0.12.2.0
unfoldrExactNM :: (Monad m, Prim a) => Int -> (b -> m (a, b)) -> b -> m (Vector a)
{-# INLINE unfoldrExactNM #-}
unfoldrExactNM :: forall (m :: * -> *) a b.
(Monad m, Prim a) =>
Int -> (b -> m (a, b)) -> b -> m (Vector a)
unfoldrExactNM = Int -> (b -> m (a, b)) -> b -> m (Vector a)
forall (m :: * -> *) (v :: * -> *) a b.
(Monad m, Vector v a) =>
Int -> (b -> m (a, b)) -> b -> m (v a)
G.unfoldrExactNM

-- | /O(n)/ Construct a vector with @n@ elements by repeatedly applying the
-- generator function to the already constructed part of the vector.
--
-- > constructN 3 f = let a = f <> ; b = f <a> ; c = f <a,b> in <a,b,c>
constructN :: Prim a => Int -> (Vector a -> a) -> Vector a
{-# INLINE constructN #-}
constructN :: forall a. Prim a => Int -> (Vector a -> a) -> Vector a
constructN = Int -> (Vector a -> a) -> Vector a
forall (v :: * -> *) a. Vector v a => Int -> (v a -> a) -> v a
G.constructN

-- | /O(n)/ Construct a vector with @n@ elements from right to left by
-- repeatedly applying the generator function to the already constructed part
-- of the vector.
--
-- > constructrN 3 f = let a = f <> ; b = f<a> ; c = f <b,a> in <c,b,a>
constructrN :: Prim a => Int -> (Vector a -> a) -> Vector a
{-# INLINE constructrN #-}
constructrN :: forall a. Prim a => Int -> (Vector a -> a) -> Vector a
constructrN = Int -> (Vector a -> a) -> Vector a
forall (v :: * -> *) a. Vector v a => Int -> (v a -> a) -> v a
G.constructrN

-- Enumeration
-- -----------

-- | /O(n)/ Yield a vector of the given length, containing the values @x@, @x+1@
-- etc. This operation is usually more efficient than 'enumFromTo'.
--
-- > enumFromN 5 3 = <5,6,7>
enumFromN :: (Prim a, Num a) => a -> Int -> Vector a
{-# INLINE enumFromN #-}
enumFromN :: forall a. (Prim a, Num a) => a -> Int -> Vector a
enumFromN = a -> Int -> Vector a
forall (v :: * -> *) a. (Vector v a, Num a) => a -> Int -> v a
G.enumFromN

-- | /O(n)/ Yield a vector of the given length, containing the values @x@, @x+y@,
-- @x+y+y@ etc. This operations is usually more efficient than 'enumFromThenTo'.
--
-- > enumFromStepN 1 2 5 = <1,3,5,7,9>
enumFromStepN :: (Prim a, Num a) => a -> a -> Int -> Vector a
{-# INLINE enumFromStepN #-}
enumFromStepN :: forall a. (Prim a, Num a) => a -> a -> Int -> Vector a
enumFromStepN = a -> a -> Int -> Vector a
forall (v :: * -> *) a. (Vector v a, Num a) => a -> a -> Int -> v a
G.enumFromStepN

-- | /O(n)/ Enumerate values from @x@ to @y@.
--
-- /WARNING:/ This operation can be very inefficient. If possible, use
-- 'enumFromN' instead.
enumFromTo :: (Prim a, Enum a) => a -> a -> Vector a
{-# INLINE enumFromTo #-}
enumFromTo :: forall a. (Prim a, Enum a) => a -> a -> Vector a
enumFromTo = a -> a -> Vector a
forall (v :: * -> *) a. (Vector v a, Enum a) => a -> a -> v a
G.enumFromTo

-- | /O(n)/ Enumerate values from @x@ to @y@ with a specific step @z@.
--
-- /WARNING:/ This operation can be very inefficient. If possible, use
-- 'enumFromStepN' instead.
enumFromThenTo :: (Prim a, Enum a) => a -> a -> a -> Vector a
{-# INLINE enumFromThenTo #-}
enumFromThenTo :: forall a. (Prim a, Enum a) => a -> a -> a -> Vector a
enumFromThenTo = a -> a -> a -> Vector a
forall (v :: * -> *) a. (Vector v a, Enum a) => a -> a -> a -> v a
G.enumFromThenTo

-- Concatenation
-- -------------

-- | /O(n)/ Prepend an element.
cons :: Prim a => a -> Vector a -> Vector a
{-# INLINE cons #-}
cons :: forall a. Prim a => a -> Vector a -> Vector a
cons = a -> Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => a -> v a -> v a
G.cons

-- | /O(n)/ Append an element.
snoc :: Prim a => Vector a -> a -> Vector a
{-# INLINE snoc #-}
snoc :: forall a. Prim a => Vector a -> a -> Vector a
snoc = Vector a -> a -> Vector a
forall (v :: * -> *) a. Vector v a => v a -> a -> v a
G.snoc

infixr 5 ++
-- | /O(m+n)/ Concatenate two vectors.
(++) :: Prim a => Vector a -> Vector a -> Vector a
{-# INLINE (++) #-}
++ :: forall a. Prim a => Vector a -> Vector a -> Vector a
(++) = Vector a -> Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => v a -> v a -> v a
(G.++)

-- | /O(n)/ Concatenate all vectors in the list.
concat :: Prim a => [Vector a] -> Vector a
{-# INLINE concat #-}
concat :: forall a. Prim a => [Vector a] -> Vector a
concat = [Vector a] -> Vector a
forall (v :: * -> *) a. Vector v a => [v a] -> v a
G.concat

-- Monadic initialisation
-- ----------------------

-- | /O(n)/ Execute the monadic action the given number of times and store the
-- results in a vector.
replicateM :: (Monad m, Prim a) => Int -> m a -> m (Vector a)
{-# INLINE replicateM #-}
replicateM :: forall (m :: * -> *) a.
(Monad m, Prim a) =>
Int -> m a -> m (Vector a)
replicateM = Int -> m a -> m (Vector a)
forall (m :: * -> *) (v :: * -> *) a.
(Monad m, Vector v a) =>
Int -> m a -> m (v a)
G.replicateM

-- | /O(n)/ Construct a vector of the given length by applying the monadic
-- action to each index.
generateM :: (Monad m, Prim a) => Int -> (Int -> m a) -> m (Vector a)
{-# INLINE generateM #-}
generateM :: forall (m :: * -> *) a.
(Monad m, Prim a) =>
Int -> (Int -> m a) -> m (Vector a)
generateM = Int -> (Int -> m a) -> m (Vector a)
forall (m :: * -> *) (v :: * -> *) a.
(Monad m, Vector v a) =>
Int -> (Int -> m a) -> m (v a)
G.generateM

-- | /O(n)/ Apply the monadic function \(\max(n - 1, 0)\) times to an initial value, producing a vector
-- of length \(\max(n, 0)\). The 0th element will contain the initial value, which is why there
-- is one less function application than the number of elements in the produced vector.
--
-- For a non-monadic version, see `iterateN`.
--
-- @since 0.12.0.0
iterateNM :: (Monad m, Prim a) => Int -> (a -> m a) -> a -> m (Vector a)
{-# INLINE iterateNM #-}
iterateNM :: forall (m :: * -> *) a.
(Monad m, Prim a) =>
Int -> (a -> m a) -> a -> m (Vector a)
iterateNM = Int -> (a -> m a) -> a -> m (Vector a)
forall (m :: * -> *) (v :: * -> *) a.
(Monad m, Vector v a) =>
Int -> (a -> m a) -> a -> m (v a)
G.iterateNM

-- | Execute the monadic action and freeze the resulting vector.
--
-- @
-- create (do { v \<- new 2; write v 0 \'a\'; write v 1 \'b\'; return v }) = \<'a','b'\>
-- @
create :: Prim a => (forall s. ST s (MVector s a)) -> Vector a
{-# INLINE create #-}
-- NOTE: eta-expanded due to http://hackage.haskell.org/trac/ghc/ticket/4120
create :: forall a. Prim a => (forall s. ST s (MVector s a)) -> Vector a
create forall s. ST s (MVector s a)
p = (forall s. ST s (Mutable Vector s a)) -> Vector a
forall (v :: * -> *) a.
Vector v a =>
(forall s. ST s (Mutable v s a)) -> v a
G.create ST s (Mutable Vector s a)
ST s (MVector s a)
forall s. ST s (Mutable Vector s a)
forall s. ST s (MVector s a)
p

-- | Execute the monadic action and freeze the resulting vectors.
createT :: (Traversable f, Prim a) => (forall s. ST s (f (MVector s a))) -> f (Vector a)
{-# INLINE createT #-}
createT :: forall (f :: * -> *) a.
(Traversable f, Prim a) =>
(forall s. ST s (f (MVector s a))) -> f (Vector a)
createT forall s. ST s (f (MVector s a))
p = (forall s. ST s (f (Mutable Vector s a))) -> f (Vector a)
forall (f :: * -> *) (v :: * -> *) a.
(Traversable f, Vector v a) =>
(forall s. ST s (f (Mutable v s a))) -> f (v a)
G.createT ST s (f (Mutable Vector s a))
ST s (f (MVector s a))
forall s. ST s (f (Mutable Vector s a))
forall s. ST s (f (MVector s a))
p

-- Restricting memory usage
-- ------------------------

-- | /O(n)/ Yield the argument, but force it not to retain any extra memory,
-- possibly by copying it.
--
-- This is especially useful when dealing with slices. For example:
--
-- > force (slice 0 2 <huge vector>)
--
-- Here, the slice retains a reference to the huge vector. Forcing it creates
-- a copy of just the elements that belong to the slice and allows the huge
-- vector to be garbage collected.
force :: Prim a => Vector a -> Vector a
{-# INLINE force #-}
force :: forall a. Prim a => Vector a -> Vector a
force = Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => v a -> v a
G.force

-- Bulk updates
-- ------------

-- | /O(m+n)/ For each pair @(i,a)@ from the list of index/value pairs,
-- replace the vector element at position @i@ by @a@.
--
-- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7>
--
(//) :: Prim a => Vector a   -- ^ initial vector (of length @m@)
                -> [(Int, a)] -- ^ list of index/value pairs (of length @n@)
                -> Vector a
{-# INLINE (//) #-}
// :: forall a. Prim a => Vector a -> [(Int, a)] -> Vector a
(//) = Vector a -> [(Int, a)] -> Vector a
forall (v :: * -> *) a. Vector v a => v a -> [(Int, a)] -> v a
(G.//)

-- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
-- corresponding value @a@ from the value vector, replace the element of the
-- initial vector at position @i@ by @a@.
--
-- > update_ <5,9,2,7>  <2,0,2> <1,3,8> = <3,9,8,7>
--
update_ :: Prim a
        => Vector a   -- ^ initial vector (of length @m@)
        -> Vector Int -- ^ index vector (of length @n1@)
        -> Vector a   -- ^ value vector (of length @n2@)
        -> Vector a
{-# INLINE update_ #-}
update_ :: forall a. Prim a => Vector a -> Vector Int -> Vector a -> Vector a
update_ = Vector a -> Vector Int -> Vector a -> Vector a
forall (v :: * -> *) a.
(Vector v a, Vector v Int) =>
v a -> v Int -> v a -> v a
G.update_

-- | Same as ('//'), but without bounds checking.
unsafeUpd :: Prim a => Vector a -> [(Int, a)] -> Vector a
{-# INLINE unsafeUpd #-}
unsafeUpd :: forall a. Prim a => Vector a -> [(Int, a)] -> Vector a
unsafeUpd = Vector a -> [(Int, a)] -> Vector a
forall (v :: * -> *) a. Vector v a => v a -> [(Int, a)] -> v a
G.unsafeUpd

-- | Same as 'update_', but without bounds checking.
unsafeUpdate_ :: Prim a => Vector a -> Vector Int -> Vector a -> Vector a
{-# INLINE unsafeUpdate_ #-}
unsafeUpdate_ :: forall a. Prim a => Vector a -> Vector Int -> Vector a -> Vector a
unsafeUpdate_ = Vector a -> Vector Int -> Vector a -> Vector a
forall (v :: * -> *) a.
(Vector v a, Vector v Int) =>
v a -> v Int -> v a -> v a
G.unsafeUpdate_

-- Accumulations
-- -------------

-- | /O(m+n)/ For each pair @(i,b)@ from the list, replace the vector element
-- @a@ at position @i@ by @f a b@.
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.accum (+) (VP.fromList [1000,2000,3000 :: Int]) [(2,4),(1,6),(0,3),(1,10)]
-- [1003,2016,3004]
accum :: Prim a
      => (a -> b -> a) -- ^ accumulating function @f@
      -> Vector a      -- ^ initial vector (of length @m@)
      -> [(Int,b)]     -- ^ list of index/value pairs (of length @n@)
      -> Vector a
{-# INLINE accum #-}
accum :: forall a b.
Prim a =>
(a -> b -> a) -> Vector a -> [(Int, b)] -> Vector a
accum = (a -> b -> a) -> Vector a -> [(Int, b)] -> Vector a
forall (v :: * -> *) a b.
Vector v a =>
(a -> b -> a) -> v a -> [(Int, b)] -> v a
G.accum

-- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
-- corresponding value @b@ from the the value vector,
-- replace the element of the initial vector at
-- position @i@ by @f a b@.
--
-- > accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4>
--
accumulate_ :: (Prim a, Prim b)
            => (a -> b -> a) -- ^ accumulating function @f@
            -> Vector a      -- ^ initial vector (of length @m@)
            -> Vector Int    -- ^ index vector (of length @n1@)
            -> Vector b      -- ^ value vector (of length @n2@)
            -> Vector a
{-# INLINE accumulate_ #-}
accumulate_ :: forall a b.
(Prim a, Prim b) =>
(a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a
accumulate_ = (a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a
forall (v :: * -> *) a b.
(Vector v a, Vector v Int, Vector v b) =>
(a -> b -> a) -> v a -> v Int -> v b -> v a
G.accumulate_

-- | Same as 'accum', but without bounds checking.
unsafeAccum :: Prim a => (a -> b -> a) -> Vector a -> [(Int,b)] -> Vector a
{-# INLINE unsafeAccum #-}
unsafeAccum :: forall a b.
Prim a =>
(a -> b -> a) -> Vector a -> [(Int, b)] -> Vector a
unsafeAccum = (a -> b -> a) -> Vector a -> [(Int, b)] -> Vector a
forall (v :: * -> *) a b.
Vector v a =>
(a -> b -> a) -> v a -> [(Int, b)] -> v a
G.unsafeAccum

-- | Same as 'accumulate_', but without bounds checking.
unsafeAccumulate_ :: (Prim a, Prim b) =>
               (a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a
{-# INLINE unsafeAccumulate_ #-}
unsafeAccumulate_ :: forall a b.
(Prim a, Prim b) =>
(a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a
unsafeAccumulate_ = (a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a
forall (v :: * -> *) a b.
(Vector v a, Vector v Int, Vector v b) =>
(a -> b -> a) -> v a -> v Int -> v b -> v a
G.unsafeAccumulate_

-- Permutations
-- ------------

-- | /O(n)/ Reverse a vector.
reverse :: Prim a => Vector a -> Vector a
{-# INLINE reverse #-}
reverse :: forall a. Prim a => Vector a -> Vector a
reverse = Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => v a -> v a
G.reverse

-- | /O(n)/ Yield the vector obtained by replacing each element @i@ of the
-- index vector by @xs'!'i@. This is equivalent to @'map' (xs'!') is@, but is
-- often much more efficient.
--
-- > backpermute <a,b,c,d> <0,3,2,3,1,0> = <a,d,c,d,b,a>
backpermute :: Prim a => Vector a -> Vector Int -> Vector a
{-# INLINE backpermute #-}
backpermute :: forall a. Prim a => Vector a -> Vector Int -> Vector a
backpermute = Vector a -> Vector Int -> Vector a
forall (v :: * -> *) a.
(HasCallStack, Vector v a, Vector v Int) =>
v a -> v Int -> v a
G.backpermute

-- | Same as 'backpermute', but without bounds checking.
unsafeBackpermute :: Prim a => Vector a -> Vector Int -> Vector a
{-# INLINE unsafeBackpermute #-}
unsafeBackpermute :: forall a. Prim a => Vector a -> Vector Int -> Vector a
unsafeBackpermute = Vector a -> Vector Int -> Vector a
forall (v :: * -> *) a.
(Vector v a, Vector v Int) =>
v a -> v Int -> v a
G.unsafeBackpermute

-- Safe destructive updates
-- ------------------------

-- | Apply a destructive operation to a vector. The operation may be
-- performed in place if it is safe to do so and will modify a copy of the
-- vector otherwise (see 'Data.Vector.Generic.New.New' for details).
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> import qualified Data.Vector.Primitive.Mutable as MVP
-- >>> VP.modify (\v -> MVP.write v 0 'x') $ VP.replicate 4 'a'
-- "xaaa"
modify :: Prim a => (forall s. MVector s a -> ST s ()) -> Vector a -> Vector a
{-# INLINE modify #-}
modify :: forall a.
Prim a =>
(forall s. MVector s a -> ST s ()) -> Vector a -> Vector a
modify forall s. MVector s a -> ST s ()
p = (forall s. Mutable Vector s a -> ST s ()) -> Vector a -> Vector a
forall (v :: * -> *) a.
Vector v a =>
(forall s. Mutable v s a -> ST s ()) -> v a -> v a
G.modify Mutable Vector s a -> ST s ()
MVector s a -> ST s ()
forall s. Mutable Vector s a -> ST s ()
forall s. MVector s a -> ST s ()
p

-- Mapping
-- -------

-- | /O(n)/ Map a function over a vector.
map :: (Prim a, Prim b) => (a -> b) -> Vector a -> Vector b
{-# INLINE map #-}
map :: forall a b. (Prim a, Prim b) => (a -> b) -> Vector a -> Vector b
map = (a -> b) -> Vector a -> Vector b
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> b) -> v a -> v b
G.map

-- | /O(n)/ Apply a function to every element of a vector and its index.
imap :: (Prim a, Prim b) => (Int -> a -> b) -> Vector a -> Vector b
{-# INLINE imap #-}
imap :: forall a b.
(Prim a, Prim b) =>
(Int -> a -> b) -> Vector a -> Vector b
imap = (Int -> a -> b) -> Vector a -> Vector b
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(Int -> a -> b) -> v a -> v b
G.imap

-- | Map a function over a vector and concatenate the results.
concatMap :: (Prim a, Prim b) => (a -> Vector b) -> Vector a -> Vector b
{-# INLINE concatMap #-}
concatMap :: forall a b.
(Prim a, Prim b) =>
(a -> Vector b) -> Vector a -> Vector b
concatMap = (a -> Vector b) -> Vector a -> Vector b
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> v b) -> v a -> v b
G.concatMap

-- Monadic mapping
-- ---------------

-- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
-- vector of results.
mapM :: (Monad m, Prim a, Prim b) => (a -> m b) -> Vector a -> m (Vector b)
{-# INLINE mapM #-}
mapM :: forall (m :: * -> *) a b.
(Monad m, Prim a, Prim b) =>
(a -> m b) -> Vector a -> m (Vector b)
mapM = (a -> m b) -> Vector a -> m (Vector b)
forall (m :: * -> *) (v :: * -> *) a b.
(Monad m, Vector v a, Vector v b) =>
(a -> m b) -> v a -> m (v b)
G.mapM

-- | /O(n)/ Apply the monadic action to every element of a vector and its
-- index, yielding a vector of results.
--
-- @since 0.12.2.0
imapM :: (Monad m, Prim a, Prim b)
      => (Int -> a -> m b) -> Vector a -> m (Vector b)
{-# INLINE imapM #-}
imapM :: forall (m :: * -> *) a b.
(Monad m, Prim a, Prim b) =>
(Int -> a -> m b) -> Vector a -> m (Vector b)
imapM = (Int -> a -> m b) -> Vector a -> m (Vector b)
forall (m :: * -> *) (v :: * -> *) a b.
(Monad m, Vector v a, Vector v b) =>
(Int -> a -> m b) -> v a -> m (v b)
G.imapM

-- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
-- results.
mapM_ :: (Monad m, Prim a) => (a -> m b) -> Vector a -> m ()
{-# INLINE mapM_ #-}
mapM_ :: forall (m :: * -> *) a b.
(Monad m, Prim a) =>
(a -> m b) -> Vector a -> m ()
mapM_ = (a -> m b) -> Vector a -> m ()
forall (m :: * -> *) (v :: * -> *) a b.
(Monad m, Vector v a) =>
(a -> m b) -> v a -> m ()
G.mapM_

-- | /O(n)/ Apply the monadic action to every element of a vector and its
-- index, ignoring the results.
--
-- @since 0.12.2.0
imapM_ :: (Monad m, Prim a) => (Int -> a -> m b) -> Vector a -> m ()
{-# INLINE imapM_ #-}
imapM_ :: forall (m :: * -> *) a b.
(Monad m, Prim a) =>
(Int -> a -> m b) -> Vector a -> m ()
imapM_ = (Int -> a -> m b) -> Vector a -> m ()
forall (m :: * -> *) (v :: * -> *) a b.
(Monad m, Vector v a) =>
(Int -> a -> m b) -> v a -> m ()
G.imapM_

-- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
-- vector of results. Equivalent to @flip 'mapM'@.
forM :: (Monad m, Prim a, Prim b) => Vector a -> (a -> m b) -> m (Vector b)
{-# INLINE forM #-}
forM :: forall (m :: * -> *) a b.
(Monad m, Prim a, Prim b) =>
Vector a -> (a -> m b) -> m (Vector b)
forM = Vector a -> (a -> m b) -> m (Vector b)
forall (m :: * -> *) (v :: * -> *) a b.
(Monad m, Vector v a, Vector v b) =>
v a -> (a -> m b) -> m (v b)
G.forM

-- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
-- results. Equivalent to @flip 'mapM_'@.
forM_ :: (Monad m, Prim a) => Vector a -> (a -> m b) -> m ()
{-# INLINE forM_ #-}
forM_ :: forall (m :: * -> *) a b.
(Monad m, Prim a) =>
Vector a -> (a -> m b) -> m ()
forM_ = Vector a -> (a -> m b) -> m ()
forall (m :: * -> *) (v :: * -> *) a b.
(Monad m, Vector v a) =>
v a -> (a -> m b) -> m ()
G.forM_

-- | /O(n)/ Apply the monadic action to all elements of the vector and their indices, yielding a
-- vector of results. Equivalent to @'flip' 'imapM'@.
--
-- @since 0.12.2.0
iforM :: (Monad m, Prim a, Prim b) => Vector a -> (Int -> a -> m b) -> m (Vector b)
{-# INLINE iforM #-}
iforM :: forall (m :: * -> *) a b.
(Monad m, Prim a, Prim b) =>
Vector a -> (Int -> a -> m b) -> m (Vector b)
iforM = Vector a -> (Int -> a -> m b) -> m (Vector b)
forall (m :: * -> *) (v :: * -> *) a b.
(Monad m, Vector v a, Vector v b) =>
v a -> (Int -> a -> m b) -> m (v b)
G.iforM

-- | /O(n)/ Apply the monadic action to all elements of the vector and their indices
-- and ignore the results. Equivalent to @'flip' 'imapM_'@.
--
-- @since 0.12.2.0
iforM_ :: (Monad m, Prim a) => Vector a -> (Int -> a -> m b) -> m ()
{-# INLINE iforM_ #-}
iforM_ :: forall (m :: * -> *) a b.
(Monad m, Prim a) =>
Vector a -> (Int -> a -> m b) -> m ()
iforM_ = Vector a -> (Int -> a -> m b) -> m ()
forall (m :: * -> *) (v :: * -> *) a b.
(Monad m, Vector v a) =>
v a -> (Int -> a -> m b) -> m ()
G.iforM_

-- Zipping
-- -------

-- | /O(min(m,n))/ Zip two vectors with the given function.
zipWith :: (Prim a, Prim b, Prim c)
        => (a -> b -> c) -> Vector a -> Vector b -> Vector c
{-# INLINE zipWith #-}
zipWith :: forall a b c.
(Prim a, Prim b, Prim c) =>
(a -> b -> c) -> Vector a -> Vector b -> Vector c
zipWith = (a -> b -> c) -> Vector a -> Vector b -> Vector c
forall (v :: * -> *) a b c.
(Vector v a, Vector v b, Vector v c) =>
(a -> b -> c) -> v a -> v b -> v c
G.zipWith

-- | Zip three vectors with the given function.
zipWith3 :: (Prim a, Prim b, Prim c, Prim d)
         => (a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d
{-# INLINE zipWith3 #-}
zipWith3 :: forall a b c d.
(Prim a, Prim b, Prim c, Prim d) =>
(a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d
zipWith3 = (a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d
forall (v :: * -> *) a b c d.
(Vector v a, Vector v b, Vector v c, Vector v d) =>
(a -> b -> c -> d) -> v a -> v b -> v c -> v d
G.zipWith3

zipWith4 :: (Prim a, Prim b, Prim c, Prim d, Prim e)
         => (a -> b -> c -> d -> e)
         -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
{-# INLINE zipWith4 #-}
zipWith4 :: forall a b c d e.
(Prim a, Prim b, Prim c, Prim d, Prim e) =>
(a -> b -> c -> d -> e)
-> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
zipWith4 = (a -> b -> c -> d -> e)
-> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
forall (v :: * -> *) a b c d e.
(Vector v a, Vector v b, Vector v c, Vector v d, Vector v e) =>
(a -> b -> c -> d -> e) -> v a -> v b -> v c -> v d -> v e
G.zipWith4

zipWith5 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
             Prim f)
         => (a -> b -> c -> d -> e -> f)
         -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
         -> Vector f
{-# INLINE zipWith5 #-}
zipWith5 :: forall a b c d e f.
(Prim a, Prim b, Prim c, Prim d, Prim e, Prim f) =>
(a -> b -> c -> d -> e -> f)
-> Vector a
-> Vector b
-> Vector c
-> Vector d
-> Vector e
-> Vector f
zipWith5 = (a -> b -> c -> d -> e -> f)
-> Vector a
-> Vector b
-> Vector c
-> Vector d
-> Vector e
-> Vector f
forall (v :: * -> *) a b c d e f.
(Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
 Vector v f) =>
(a -> b -> c -> d -> e -> f)
-> v a -> v b -> v c -> v d -> v e -> v f
G.zipWith5

zipWith6 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
             Prim f, Prim g)
         => (a -> b -> c -> d -> e -> f -> g)
         -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
         -> Vector f -> Vector g
{-# INLINE zipWith6 #-}
zipWith6 :: forall a b c d e f g.
(Prim a, Prim b, Prim c, Prim d, Prim e, Prim f, Prim g) =>
(a -> b -> c -> d -> e -> f -> g)
-> Vector a
-> Vector b
-> Vector c
-> Vector d
-> Vector e
-> Vector f
-> Vector g
zipWith6 = (a -> b -> c -> d -> e -> f -> g)
-> Vector a
-> Vector b
-> Vector c
-> Vector d
-> Vector e
-> Vector f
-> Vector g
forall (v :: * -> *) a b c d e f g.
(Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
 Vector v f, Vector v g) =>
(a -> b -> c -> d -> e -> f -> g)
-> v a -> v b -> v c -> v d -> v e -> v f -> v g
G.zipWith6

-- | /O(min(m,n))/ Zip two vectors with a function that also takes the
-- elements' indices.
izipWith :: (Prim a, Prim b, Prim c)
         => (Int -> a -> b -> c) -> Vector a -> Vector b -> Vector c
{-# INLINE izipWith #-}
izipWith :: forall a b c.
(Prim a, Prim b, Prim c) =>
(Int -> a -> b -> c) -> Vector a -> Vector b -> Vector c
izipWith = (Int -> a -> b -> c) -> Vector a -> Vector b -> Vector c
forall (v :: * -> *) a b c.
(Vector v a, Vector v b, Vector v c) =>
(Int -> a -> b -> c) -> v a -> v b -> v c
G.izipWith

-- | Zip three vectors and their indices with the given function.
izipWith3 :: (Prim a, Prim b, Prim c, Prim d)
          => (Int -> a -> b -> c -> d)
          -> Vector a -> Vector b -> Vector c -> Vector d
{-# INLINE izipWith3 #-}
izipWith3 :: forall a b c d.
(Prim a, Prim b, Prim c, Prim d) =>
(Int -> a -> b -> c -> d)
-> Vector a -> Vector b -> Vector c -> Vector d
izipWith3 = (Int -> a -> b -> c -> d)
-> Vector a -> Vector b -> Vector c -> Vector d
forall (v :: * -> *) a b c d.
(Vector v a, Vector v b, Vector v c, Vector v d) =>
(Int -> a -> b -> c -> d) -> v a -> v b -> v c -> v d
G.izipWith3

izipWith4 :: (Prim a, Prim b, Prim c, Prim d, Prim e)
          => (Int -> a -> b -> c -> d -> e)
          -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
{-# INLINE izipWith4 #-}
izipWith4 :: forall a b c d e.
(Prim a, Prim b, Prim c, Prim d, Prim e) =>
(Int -> a -> b -> c -> d -> e)
-> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
izipWith4 = (Int -> a -> b -> c -> d -> e)
-> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
forall (v :: * -> *) a b c d e.
(Vector v a, Vector v b, Vector v c, Vector v d, Vector v e) =>
(Int -> a -> b -> c -> d -> e) -> v a -> v b -> v c -> v d -> v e
G.izipWith4

izipWith5 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
              Prim f)
          => (Int -> a -> b -> c -> d -> e -> f)
          -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
          -> Vector f
{-# INLINE izipWith5 #-}
izipWith5 :: forall a b c d e f.
(Prim a, Prim b, Prim c, Prim d, Prim e, Prim f) =>
(Int -> a -> b -> c -> d -> e -> f)
-> Vector a
-> Vector b
-> Vector c
-> Vector d
-> Vector e
-> Vector f
izipWith5 = (Int -> a -> b -> c -> d -> e -> f)
-> Vector a
-> Vector b
-> Vector c
-> Vector d
-> Vector e
-> Vector f
forall (v :: * -> *) a b c d e f.
(Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
 Vector v f) =>
(Int -> a -> b -> c -> d -> e -> f)
-> v a -> v b -> v c -> v d -> v e -> v f
G.izipWith5

izipWith6 :: (Prim a, Prim b, Prim c, Prim d, Prim e,
              Prim f, Prim g)
          => (Int -> a -> b -> c -> d -> e -> f -> g)
          -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
          -> Vector f -> Vector g
{-# INLINE izipWith6 #-}
izipWith6 :: forall a b c d e f g.
(Prim a, Prim b, Prim c, Prim d, Prim e, Prim f, Prim g) =>
(Int -> a -> b -> c -> d -> e -> f -> g)
-> Vector a
-> Vector b
-> Vector c
-> Vector d
-> Vector e
-> Vector f
-> Vector g
izipWith6 = (Int -> a -> b -> c -> d -> e -> f -> g)
-> Vector a
-> Vector b
-> Vector c
-> Vector d
-> Vector e
-> Vector f
-> Vector g
forall (v :: * -> *) a b c d e f g.
(Vector v a, Vector v b, Vector v c, Vector v d, Vector v e,
 Vector v f, Vector v g) =>
(Int -> a -> b -> c -> d -> e -> f -> g)
-> v a -> v b -> v c -> v d -> v e -> v f -> v g
G.izipWith6

-- Monadic zipping
-- ---------------

-- | /O(min(m,n))/ Zip the two vectors with the monadic action and yield a
-- vector of results.
zipWithM :: (Monad m, Prim a, Prim b, Prim c)
         => (a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
{-# INLINE zipWithM #-}
zipWithM :: forall (m :: * -> *) a b c.
(Monad m, Prim a, Prim b, Prim c) =>
(a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
zipWithM = (a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
forall (m :: * -> *) (v :: * -> *) a b c.
(Monad m, Vector v a, Vector v b, Vector v c) =>
(a -> b -> m c) -> v a -> v b -> m (v c)
G.zipWithM

-- | /O(min(m,n))/ Zip the two vectors with a monadic action that also takes
-- the element index and yield a vector of results.
--
-- @since 0.12.2.0
izipWithM :: (Monad m, Prim a, Prim b, Prim c)
          => (Int -> a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
{-# INLINE izipWithM #-}
izipWithM :: forall (m :: * -> *) a b c.
(Monad m, Prim a, Prim b, Prim c) =>
(Int -> a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
izipWithM = (Int -> a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
forall (m :: * -> *) (v :: * -> *) a b c.
(Monad m, Vector v a, Vector v b, Vector v c) =>
(Int -> a -> b -> m c) -> v a -> v b -> m (v c)
G.izipWithM

-- | /O(min(m,n))/ Zip the two vectors with the monadic action and ignore the
-- results.
zipWithM_ :: (Monad m, Prim a, Prim b)
          => (a -> b -> m c) -> Vector a -> Vector b -> m ()
{-# INLINE zipWithM_ #-}
zipWithM_ :: forall (m :: * -> *) a b c.
(Monad m, Prim a, Prim b) =>
(a -> b -> m c) -> Vector a -> Vector b -> m ()
zipWithM_ = (a -> b -> m c) -> Vector a -> Vector b -> m ()
forall (m :: * -> *) (v :: * -> *) a b c.
(Monad m, Vector v a, Vector v b) =>
(a -> b -> m c) -> v a -> v b -> m ()
G.zipWithM_

-- | /O(min(m,n))/ Zip the two vectors with a monadic action that also takes
-- the element index and ignore the results.
--
-- @since 0.12.2.0
izipWithM_ :: (Monad m, Prim a, Prim b)
           => (Int -> a -> b -> m c) -> Vector a -> Vector b -> m ()
{-# INLINE izipWithM_ #-}
izipWithM_ :: forall (m :: * -> *) a b c.
(Monad m, Prim a, Prim b) =>
(Int -> a -> b -> m c) -> Vector a -> Vector b -> m ()
izipWithM_ = (Int -> a -> b -> m c) -> Vector a -> Vector b -> m ()
forall (m :: * -> *) (v :: * -> *) a b c.
(Monad m, Vector v a, Vector v b) =>
(Int -> a -> b -> m c) -> v a -> v b -> m ()
G.izipWithM_

-- Filtering
-- ---------

-- | /O(n)/ Drop all elements that do not satisfy the predicate.
filter :: Prim a => (a -> Bool) -> Vector a -> Vector a
{-# INLINE filter #-}
filter :: forall a. Prim a => (a -> Bool) -> Vector a -> Vector a
filter = (a -> Bool) -> Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => (a -> Bool) -> v a -> v a
G.filter

-- | /O(n)/ Drop all elements that do not satisfy the predicate which is applied to
-- the values and their indices.
ifilter :: Prim a => (Int -> a -> Bool) -> Vector a -> Vector a
{-# INLINE ifilter #-}
ifilter :: forall a. Prim a => (Int -> a -> Bool) -> Vector a -> Vector a
ifilter = (Int -> a -> Bool) -> Vector a -> Vector a
forall (v :: * -> *) a.
Vector v a =>
(Int -> a -> Bool) -> v a -> v a
G.ifilter

-- | /O(n)/ Drop repeated adjacent elements. The first element in each group is returned.
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.uniq $ VP.fromList [1,3,3,200,3 :: Int]
-- [1,3,200,3]
uniq :: (Prim a, Eq a) => Vector a -> Vector a
{-# INLINE uniq #-}
uniq :: forall a. (Prim a, Eq a) => Vector a -> Vector a
uniq = Vector a -> Vector a
forall (v :: * -> *) a. (Vector v a, Eq a) => v a -> v a
G.uniq

-- | /O(n)/ Map the values and collect the 'Just' results.
mapMaybe :: (Prim a, Prim b) => (a -> Maybe b) -> Vector a -> Vector b
{-# INLINE mapMaybe #-}
mapMaybe :: forall a b.
(Prim a, Prim b) =>
(a -> Maybe b) -> Vector a -> Vector b
mapMaybe = (a -> Maybe b) -> Vector a -> Vector b
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> Maybe b) -> v a -> v b
G.mapMaybe

-- | /O(n)/ Map the indices/values and collect the 'Just' results.
imapMaybe :: (Prim a, Prim b) => (Int -> a -> Maybe b) -> Vector a -> Vector b
{-# INLINE imapMaybe #-}
imapMaybe :: forall a b.
(Prim a, Prim b) =>
(Int -> a -> Maybe b) -> Vector a -> Vector b
imapMaybe = (Int -> a -> Maybe b) -> Vector a -> Vector b
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(Int -> a -> Maybe b) -> v a -> v b
G.imapMaybe

-- | /O(n)/ Drop all elements that do not satisfy the monadic predicate.
filterM :: (Monad m, Prim a) => (a -> m Bool) -> Vector a -> m (Vector a)
{-# INLINE filterM #-}
filterM :: forall (m :: * -> *) a.
(Monad m, Prim a) =>
(a -> m Bool) -> Vector a -> m (Vector a)
filterM = (a -> m Bool) -> Vector a -> m (Vector a)
forall (m :: * -> *) (v :: * -> *) a.
(Monad m, Vector v a) =>
(a -> m Bool) -> v a -> m (v a)
G.filterM

-- | /O(n)/ Apply the monadic function to each element of the vector and
-- discard elements returning 'Nothing'.
--
-- @since 0.12.2.0
mapMaybeM
  :: (Monad m, Prim a, Prim b)
  => (a -> m (Maybe b)) -> Vector a -> m (Vector b)
{-# INLINE mapMaybeM #-}
mapMaybeM :: forall (m :: * -> *) a b.
(Monad m, Prim a, Prim b) =>
(a -> m (Maybe b)) -> Vector a -> m (Vector b)
mapMaybeM = (a -> m (Maybe b)) -> Vector a -> m (Vector b)
forall (m :: * -> *) (v :: * -> *) a b.
(Monad m, Vector v a, Vector v b) =>
(a -> m (Maybe b)) -> v a -> m (v b)
G.mapMaybeM

-- | /O(n)/ Apply the monadic function to each element of the vector and its index.
-- Discard elements returning 'Nothing'.
--
-- @since 0.12.2.0
imapMaybeM
  :: (Monad m, Prim a, Prim b)
  => (Int -> a -> m (Maybe b)) -> Vector a -> m (Vector b)
{-# INLINE imapMaybeM #-}
imapMaybeM :: forall (m :: * -> *) a b.
(Monad m, Prim a, Prim b) =>
(Int -> a -> m (Maybe b)) -> Vector a -> m (Vector b)
imapMaybeM = (Int -> a -> m (Maybe b)) -> Vector a -> m (Vector b)
forall (m :: * -> *) (v :: * -> *) a b.
(Monad m, Vector v a, Vector v b) =>
(Int -> a -> m (Maybe b)) -> v a -> m (v b)
G.imapMaybeM

-- | /O(n)/ Yield the longest prefix of elements satisfying the predicate.
-- The current implementation is not copy-free, unless the result vector is
-- fused away.
takeWhile :: Prim a => (a -> Bool) -> Vector a -> Vector a
{-# INLINE takeWhile #-}
takeWhile :: forall a. Prim a => (a -> Bool) -> Vector a -> Vector a
takeWhile = (a -> Bool) -> Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => (a -> Bool) -> v a -> v a
G.takeWhile

-- | /O(n)/ Drop the longest prefix of elements that satisfy the predicate
-- without copying.
dropWhile :: Prim a => (a -> Bool) -> Vector a -> Vector a
{-# INLINE dropWhile #-}
dropWhile :: forall a. Prim a => (a -> Bool) -> Vector a -> Vector a
dropWhile = (a -> Bool) -> Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => (a -> Bool) -> v a -> v a
G.dropWhile

-- Parititioning
-- -------------

-- | /O(n)/ Split the vector in two parts, the first one containing those
-- elements that satisfy the predicate and the second one those that don't. The
-- relative order of the elements is preserved at the cost of a sometimes
-- reduced performance compared to 'unstablePartition'.
partition :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
{-# INLINE partition #-}
partition :: forall a. Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
partition = (a -> Bool) -> Vector a -> (Vector a, Vector a)
forall (v :: * -> *) a.
Vector v a =>
(a -> Bool) -> v a -> (v a, v a)
G.partition

-- | /O(n)/ Split the vector into two parts, the first one containing the
-- @`Left`@ elements and the second containing the @`Right`@ elements.
-- The relative order of the elements is preserved.
--
-- @since 0.12.1.0
partitionWith :: (Prim a, Prim b, Prim c) => (a -> Either b c) -> Vector a -> (Vector b, Vector c)
{-# INLINE partitionWith #-}
partitionWith :: forall a b c.
(Prim a, Prim b, Prim c) =>
(a -> Either b c) -> Vector a -> (Vector b, Vector c)
partitionWith = (a -> Either b c) -> Vector a -> (Vector b, Vector c)
forall (v :: * -> *) a b c.
(Vector v a, Vector v b, Vector v c) =>
(a -> Either b c) -> v a -> (v b, v c)
G.partitionWith

-- | /O(n)/ Split the vector in two parts, the first one containing those
-- elements that satisfy the predicate and the second one those that don't.
-- The order of the elements is not preserved, but the operation is often
-- faster than 'partition'.
unstablePartition :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
{-# INLINE unstablePartition #-}
unstablePartition :: forall a. Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
unstablePartition = (a -> Bool) -> Vector a -> (Vector a, Vector a)
forall (v :: * -> *) a.
Vector v a =>
(a -> Bool) -> v a -> (v a, v a)
G.unstablePartition

-- | /O(n)/ Split the vector into the longest prefix of elements that satisfy
-- the predicate and the rest without copying.
span :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
{-# INLINE span #-}
span :: forall a. Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
span = (a -> Bool) -> Vector a -> (Vector a, Vector a)
forall (v :: * -> *) a.
Vector v a =>
(a -> Bool) -> v a -> (v a, v a)
G.span

-- | /O(n)/ Split the vector into the longest prefix of elements that do not
-- satisfy the predicate and the rest without copying.
break :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
{-# INLINE break #-}
break :: forall a. Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a)
break = (a -> Bool) -> Vector a -> (Vector a, Vector a)
forall (v :: * -> *) a.
Vector v a =>
(a -> Bool) -> v a -> (v a, v a)
G.break

-- | /O(n)/ Split a vector into a list of slices, using a predicate function.
--
-- The concatenation of this list of slices is equal to the argument vector,
-- and each slice contains only equal elements, as determined by the equality
-- predicate function.
--
-- Does not fuse.
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> import           Data.Char (isUpper)
-- >>> VP.groupBy (\a b -> isUpper a == isUpper b) (VP.fromList "Mississippi River")
-- ["M","ississippi ","R","iver"]
--
-- See also 'Data.List.groupBy', 'group'.
--
-- @since 0.13.0.1
groupBy :: Prim a => (a -> a -> Bool) -> Vector a -> [Vector a]
{-# INLINE groupBy #-}
groupBy :: forall a. Prim a => (a -> a -> Bool) -> Vector a -> [Vector a]
groupBy = (a -> a -> Bool) -> Vector a -> [Vector a]
forall (v :: * -> *) a.
Vector v a =>
(a -> a -> Bool) -> v a -> [v a]
G.groupBy

-- | /O(n)/ Split a vector into a list of slices of the input vector.
--
-- The concatenation of this list of slices is equal to the argument vector,
-- and each slice contains only equal elements.
--
-- Does not fuse.
--
-- This is the equivalent of 'groupBy (==)'.
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.group (VP.fromList "Mississippi")
-- ["M","i","ss","i","ss","i","pp","i"]
--
-- See also 'Data.List.group'.
--
-- @since 0.13.0.1
group :: (Prim a, Eq a) => Vector a -> [Vector a]
{-# INLINE group #-}
group :: forall a. (Prim a, Eq a) => Vector a -> [Vector a]
group = (a -> a -> Bool) -> Vector a -> [Vector a]
forall (v :: * -> *) a.
Vector v a =>
(a -> a -> Bool) -> v a -> [v a]
G.groupBy a -> a -> Bool
forall a. Eq a => a -> a -> Bool
(==)

-- Searching
-- ---------

infix 4 `elem`
-- | /O(n)/ Check if the vector contains an element.
elem :: (Prim a, Eq a) => a -> Vector a -> Bool
{-# INLINE elem #-}
elem :: forall a. (Prim a, Eq a) => a -> Vector a -> Bool
elem = a -> Vector a -> Bool
forall (v :: * -> *) a. (Vector v a, Eq a) => a -> v a -> Bool
G.elem

infix 4 `notElem`
-- | /O(n)/ Check if the vector does not contain an element (inverse of 'elem').
notElem :: (Prim a, Eq a) => a -> Vector a -> Bool
{-# INLINE notElem #-}
notElem :: forall a. (Prim a, Eq a) => a -> Vector a -> Bool
notElem = a -> Vector a -> Bool
forall (v :: * -> *) a. (Vector v a, Eq a) => a -> v a -> Bool
G.notElem

-- | /O(n)/ Yield 'Just' the first element matching the predicate or 'Nothing'
-- if no such element exists.
find :: Prim a => (a -> Bool) -> Vector a -> Maybe a
{-# INLINE find #-}
find :: forall a. Prim a => (a -> Bool) -> Vector a -> Maybe a
find = (a -> Bool) -> Vector a -> Maybe a
forall (v :: * -> *) a. Vector v a => (a -> Bool) -> v a -> Maybe a
G.find

-- | /O(n)/ Yield 'Just' the index of the first element matching the predicate
-- or 'Nothing' if no such element exists.
findIndex :: Prim a => (a -> Bool) -> Vector a -> Maybe Int
{-# INLINE findIndex #-}
findIndex :: forall a. Prim a => (a -> Bool) -> Vector a -> Maybe Int
findIndex = (a -> Bool) -> Vector a -> Maybe Int
forall (v :: * -> *) a.
Vector v a =>
(a -> Bool) -> v a -> Maybe Int
G.findIndex

-- | /O(n)/ Yield 'Just' the index of the /last/ element matching the predicate
-- or 'Nothing' if no such element exists.
--
-- Does not fuse.
findIndexR :: Prim a => (a -> Bool) -> Vector a -> Maybe Int
{-# INLINE findIndexR #-}
findIndexR :: forall a. Prim a => (a -> Bool) -> Vector a -> Maybe Int
findIndexR = (a -> Bool) -> Vector a -> Maybe Int
forall (v :: * -> *) a.
Vector v a =>
(a -> Bool) -> v a -> Maybe Int
G.findIndexR

-- | /O(n)/ Yield the indices of elements satisfying the predicate in ascending
-- order.
findIndices :: Prim a => (a -> Bool) -> Vector a -> Vector Int
{-# INLINE findIndices #-}
findIndices :: forall a. Prim a => (a -> Bool) -> Vector a -> Vector Int
findIndices = (a -> Bool) -> Vector a -> Vector Int
forall (v :: * -> *) a.
(Vector v a, Vector v Int) =>
(a -> Bool) -> v a -> v Int
G.findIndices

-- | /O(n)/ Yield 'Just' the index of the first occurrence of the given element or
-- 'Nothing' if the vector does not contain the element. This is a specialised
-- version of 'findIndex'.
elemIndex :: (Prim a, Eq a) => a -> Vector a -> Maybe Int
{-# INLINE elemIndex #-}
elemIndex :: forall a. (Prim a, Eq a) => a -> Vector a -> Maybe Int
elemIndex = a -> Vector a -> Maybe Int
forall (v :: * -> *) a. (Vector v a, Eq a) => a -> v a -> Maybe Int
G.elemIndex

-- | /O(n)/ Yield the indices of all occurrences of the given element in
-- ascending order. This is a specialised version of 'findIndices'.
elemIndices :: (Prim a, Eq a) => a -> Vector a -> Vector Int
{-# INLINE elemIndices #-}
elemIndices :: forall a. (Prim a, Eq a) => a -> Vector a -> Vector Int
elemIndices = a -> Vector a -> Vector Int
forall (v :: * -> *) a.
(Vector v a, Vector v Int, Eq a) =>
a -> v a -> v Int
G.elemIndices

-- Folding
-- -------

-- | /O(n)/ Left fold.
foldl :: Prim b => (a -> b -> a) -> a -> Vector b -> a
{-# INLINE foldl #-}
foldl :: forall b a. Prim b => (a -> b -> a) -> a -> Vector b -> a
foldl = (a -> b -> a) -> a -> Vector b -> a
forall (v :: * -> *) b a.
Vector v b =>
(a -> b -> a) -> a -> v b -> a
G.foldl

-- | /O(n)/ Left fold on non-empty vectors.
foldl1 :: Prim a => (a -> a -> a) -> Vector a -> a
{-# INLINE foldl1 #-}
foldl1 :: forall a. Prim a => (a -> a -> a) -> Vector a -> a
foldl1 = (a -> a -> a) -> Vector a -> a
forall (v :: * -> *) a. Vector v a => (a -> a -> a) -> v a -> a
G.foldl1

-- | /O(n)/ Left fold with strict accumulator.
foldl' :: Prim b => (a -> b -> a) -> a -> Vector b -> a
{-# INLINE foldl' #-}
foldl' :: forall b a. Prim b => (a -> b -> a) -> a -> Vector b -> a
foldl' = (a -> b -> a) -> a -> Vector b -> a
forall (v :: * -> *) b a.
Vector v b =>
(a -> b -> a) -> a -> v b -> a
G.foldl'

-- | /O(n)/ Left fold on non-empty vectors with strict accumulator.
foldl1' :: Prim a => (a -> a -> a) -> Vector a -> a
{-# INLINE foldl1' #-}
foldl1' :: forall a. Prim a => (a -> a -> a) -> Vector a -> a
foldl1' = (a -> a -> a) -> Vector a -> a
forall (v :: * -> *) a. Vector v a => (a -> a -> a) -> v a -> a
G.foldl1'

-- | /O(n)/ Right fold.
foldr :: Prim a => (a -> b -> b) -> b -> Vector a -> b
{-# INLINE foldr #-}
foldr :: forall a b. Prim a => (a -> b -> b) -> b -> Vector a -> b
foldr = (a -> b -> b) -> b -> Vector a -> b
forall (v :: * -> *) a b.
Vector v a =>
(a -> b -> b) -> b -> v a -> b
G.foldr

-- | /O(n)/ Right fold on non-empty vectors.
foldr1 :: Prim a => (a -> a -> a) -> Vector a -> a
{-# INLINE foldr1 #-}
foldr1 :: forall a. Prim a => (a -> a -> a) -> Vector a -> a
foldr1 = (a -> a -> a) -> Vector a -> a
forall (v :: * -> *) a. Vector v a => (a -> a -> a) -> v a -> a
G.foldr1

-- | /O(n)/ Right fold with a strict accumulator.
foldr' :: Prim a => (a -> b -> b) -> b -> Vector a -> b
{-# INLINE foldr' #-}
foldr' :: forall a b. Prim a => (a -> b -> b) -> b -> Vector a -> b
foldr' = (a -> b -> b) -> b -> Vector a -> b
forall (v :: * -> *) a b.
Vector v a =>
(a -> b -> b) -> b -> v a -> b
G.foldr'

-- | /O(n)/ Right fold on non-empty vectors with strict accumulator.
foldr1' :: Prim a => (a -> a -> a) -> Vector a -> a
{-# INLINE foldr1' #-}
foldr1' :: forall a. Prim a => (a -> a -> a) -> Vector a -> a
foldr1' = (a -> a -> a) -> Vector a -> a
forall (v :: * -> *) a. Vector v a => (a -> a -> a) -> v a -> a
G.foldr1'

-- | /O(n)/ Left fold using a function applied to each element and its index.
ifoldl :: Prim b => (a -> Int -> b -> a) -> a -> Vector b -> a
{-# INLINE ifoldl #-}
ifoldl :: forall b a. Prim b => (a -> Int -> b -> a) -> a -> Vector b -> a
ifoldl = (a -> Int -> b -> a) -> a -> Vector b -> a
forall (v :: * -> *) b a.
Vector v b =>
(a -> Int -> b -> a) -> a -> v b -> a
G.ifoldl

-- | /O(n)/ Left fold with strict accumulator using a function applied to each element
-- and its index.
ifoldl' :: Prim b => (a -> Int -> b -> a) -> a -> Vector b -> a
{-# INLINE ifoldl' #-}
ifoldl' :: forall b a. Prim b => (a -> Int -> b -> a) -> a -> Vector b -> a
ifoldl' = (a -> Int -> b -> a) -> a -> Vector b -> a
forall (v :: * -> *) b a.
Vector v b =>
(a -> Int -> b -> a) -> a -> v b -> a
G.ifoldl'

-- | /O(n)/ Right fold using a function applied to each element and its index.
ifoldr :: Prim a => (Int -> a -> b -> b) -> b -> Vector a -> b
{-# INLINE ifoldr #-}
ifoldr :: forall a b. Prim a => (Int -> a -> b -> b) -> b -> Vector a -> b
ifoldr = (Int -> a -> b -> b) -> b -> Vector a -> b
forall (v :: * -> *) a b.
Vector v a =>
(Int -> a -> b -> b) -> b -> v a -> b
G.ifoldr

-- | /O(n)/ Right fold with strict accumulator using a function applied to each
-- element and its index.
ifoldr' :: Prim a => (Int -> a -> b -> b) -> b -> Vector a -> b
{-# INLINE ifoldr' #-}
ifoldr' :: forall a b. Prim a => (Int -> a -> b -> b) -> b -> Vector a -> b
ifoldr' = (Int -> a -> b -> b) -> b -> Vector a -> b
forall (v :: * -> *) a b.
Vector v a =>
(Int -> a -> b -> b) -> b -> v a -> b
G.ifoldr'

-- | /O(n)/ Map each element of the structure to a monoid and combine
-- the results. It uses the same implementation as the corresponding method
-- of the 'Foldable' type cless. Note that it's implemented in terms of 'foldr'
-- and won't fuse with functions that traverse the vector from left to
-- right ('map', 'generate', etc.).
--
-- @since 0.12.2.0
foldMap :: (Monoid m, Prim a) => (a -> m) -> Vector a -> m
{-# INLINE foldMap #-}
foldMap :: forall m a. (Monoid m, Prim a) => (a -> m) -> Vector a -> m
foldMap = (a -> m) -> Vector a -> m
forall m (v :: * -> *) a.
(Monoid m, Vector v a) =>
(a -> m) -> v a -> m
G.foldMap

-- | /O(n)/ Like 'foldMap', but strict in the accumulator. It uses the same
-- implementation as the corresponding method of the 'Foldable' type class.
-- Note that it's implemented in terms of 'foldl'', so it fuses in most
-- contexts.
--
-- @since 0.12.2.0
foldMap' :: (Monoid m, Prim a) => (a -> m) -> Vector a -> m
{-# INLINE foldMap' #-}
foldMap' :: forall m a. (Monoid m, Prim a) => (a -> m) -> Vector a -> m
foldMap' = (a -> m) -> Vector a -> m
forall m (v :: * -> *) a.
(Monoid m, Vector v a) =>
(a -> m) -> v a -> m
G.foldMap'

-- Specialised folds
-- -----------------

-- | /O(n)/ Check if all elements satisfy the predicate.
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.all even $ VP.fromList [2, 4, 12 :: Int]
-- True
-- >>> VP.all even $ VP.fromList [2, 4, 13 :: Int]
-- False
-- >>> VP.all even (VP.empty :: VP.Vector Int)
-- True
all :: Prim a => (a -> Bool) -> Vector a -> Bool
{-# INLINE all #-}
all :: forall a. Prim a => (a -> Bool) -> Vector a -> Bool
all = (a -> Bool) -> Vector a -> Bool
forall (v :: * -> *) a. Vector v a => (a -> Bool) -> v a -> Bool
G.all

-- | /O(n)/ Check if any element satisfies the predicate.
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.any even $ VP.fromList [1, 3, 7 :: Int]
-- False
-- >>> VP.any even $ VP.fromList [3, 2, 13 :: Int]
-- True
-- >>> VP.any even (VP.empty :: VP.Vector Int)
-- False
any :: Prim a => (a -> Bool) -> Vector a -> Bool
{-# INLINE any #-}
any :: forall a. Prim a => (a -> Bool) -> Vector a -> Bool
any = (a -> Bool) -> Vector a -> Bool
forall (v :: * -> *) a. Vector v a => (a -> Bool) -> v a -> Bool
G.any

-- | /O(n)/ Compute the sum of the elements.
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.sum $ VP.fromList [300,20,1 :: Int]
-- 321
-- >>> VP.sum (VP.empty :: VP.Vector Int)
-- 0
sum :: (Prim a, Num a) => Vector a -> a
{-# INLINE sum #-}
sum :: forall a. (Prim a, Num a) => Vector a -> a
sum = Vector a -> a
forall (v :: * -> *) a. (Vector v a, Num a) => v a -> a
G.sum

-- | /O(n)/ Compute the product of the elements.
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.product $ VP.fromList [1,2,3,4 :: Int]
-- 24
-- >>> VP.product (VP.empty :: VP.Vector Int)
-- 1
product :: (Prim a, Num a) => Vector a -> a
{-# INLINE product #-}
product :: forall a. (Prim a, Num a) => Vector a -> a
product = Vector a -> a
forall (v :: * -> *) a. (Vector v a, Num a) => v a -> a
G.product

-- | /O(n)/ Yield the maximum element of the vector. The vector may not be
-- empty. In case of a tie, the first occurrence wins.
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.maximum $ VP.fromList [2, 1 :: Int]
-- 2
maximum :: (Prim a, Ord a) => Vector a -> a
{-# INLINE maximum #-}
maximum :: forall a. (Prim a, Ord a) => Vector a -> a
maximum = Vector a -> a
forall (v :: * -> *) a. (Vector v a, Ord a) => v a -> a
G.maximum

-- | /O(n)/ Yield the maximum element of the vector according to the
-- given comparison function. The vector may not be empty. In case of
-- a tie, the first occurrence wins. This behavior is different from
-- 'Data.List.maximumBy' which returns the last tie.
maximumBy :: Prim a => (a -> a -> Ordering) -> Vector a -> a
{-# INLINE maximumBy #-}
maximumBy :: forall a. Prim a => (a -> a -> Ordering) -> Vector a -> a
maximumBy = (a -> a -> Ordering) -> Vector a -> a
forall (v :: * -> *) a.
Vector v a =>
(a -> a -> Ordering) -> v a -> a
G.maximumBy

-- | /O(n)/ Yield the maximum element of the vector by comparing the results
-- of a key function on each element. In case of a tie, the first occurrence
-- wins. The vector may not be empty.
--
-- @since 0.13.0.0
maximumOn :: (Ord b, Prim a) => (a -> b) -> Vector a -> a
{-# INLINE maximumOn #-}
maximumOn :: forall b a. (Ord b, Prim a) => (a -> b) -> Vector a -> a
maximumOn = (a -> b) -> Vector a -> a
forall b (v :: * -> *) a.
(Ord b, Vector v a) =>
(a -> b) -> v a -> a
G.maximumOn

-- | /O(n)/ Yield the minimum element of the vector. The vector may not be
-- empty. In case of a tie, the first occurrence wins.
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.minimum $ VP.fromList [2, 1 :: Int]
-- 1
minimum :: (Prim a, Ord a) => Vector a -> a
{-# INLINE minimum #-}
minimum :: forall a. (Prim a, Ord a) => Vector a -> a
minimum = Vector a -> a
forall (v :: * -> *) a. (Vector v a, Ord a) => v a -> a
G.minimum

-- | /O(n)/ Yield the minimum element of the vector according to the
-- given comparison function. The vector may not be empty. In case of
-- a tie, the first occurrence wins.
minimumBy :: Prim a => (a -> a -> Ordering) -> Vector a -> a
{-# INLINE minimumBy #-}
minimumBy :: forall a. Prim a => (a -> a -> Ordering) -> Vector a -> a
minimumBy = (a -> a -> Ordering) -> Vector a -> a
forall (v :: * -> *) a.
Vector v a =>
(a -> a -> Ordering) -> v a -> a
G.minimumBy

-- | /O(n)/ Yield the minimum element of the vector by comparing the results
-- of a key function on each element. In case of a tie, the first occurrence
-- wins. The vector may not be empty.
--
-- @since 0.13.0.0
minimumOn :: (Ord b, Prim a) => (a -> b) -> Vector a -> a
{-# INLINE minimumOn #-}
minimumOn :: forall b a. (Ord b, Prim a) => (a -> b) -> Vector a -> a
minimumOn = (a -> b) -> Vector a -> a
forall b (v :: * -> *) a.
(Ord b, Vector v a) =>
(a -> b) -> v a -> a
G.minimumOn

-- | /O(n)/ Yield the index of the maximum element of the vector. The vector
-- may not be empty.
maxIndex :: (Prim a, Ord a) => Vector a -> Int
{-# INLINE maxIndex #-}
maxIndex :: forall a. (Prim a, Ord a) => Vector a -> Int
maxIndex = Vector a -> Int
forall (v :: * -> *) a. (Vector v a, Ord a) => v a -> Int
G.maxIndex

-- | /O(n)/ Yield the index of the maximum element of the vector
-- according to the given comparison function. The vector may not be
-- empty. In case of a tie, the first occurrence wins.
maxIndexBy :: Prim a => (a -> a -> Ordering) -> Vector a -> Int
{-# INLINE maxIndexBy #-}
maxIndexBy :: forall a. Prim a => (a -> a -> Ordering) -> Vector a -> Int
maxIndexBy = (a -> a -> Ordering) -> Vector a -> Int
forall (v :: * -> *) a.
Vector v a =>
(a -> a -> Ordering) -> v a -> Int
G.maxIndexBy

-- | /O(n)/ Yield the index of the minimum element of the vector. The vector
-- may not be empty.
minIndex :: (Prim a, Ord a) => Vector a -> Int
{-# INLINE minIndex #-}
minIndex :: forall a. (Prim a, Ord a) => Vector a -> Int
minIndex = Vector a -> Int
forall (v :: * -> *) a. (Vector v a, Ord a) => v a -> Int
G.minIndex

-- | /O(n)/ Yield the index of the minimum element of the vector according to
-- the given comparison function. The vector may not be empty.
minIndexBy :: Prim a => (a -> a -> Ordering) -> Vector a -> Int
{-# INLINE minIndexBy #-}
minIndexBy :: forall a. Prim a => (a -> a -> Ordering) -> Vector a -> Int
minIndexBy = (a -> a -> Ordering) -> Vector a -> Int
forall (v :: * -> *) a.
Vector v a =>
(a -> a -> Ordering) -> v a -> Int
G.minIndexBy

-- Monadic folds
-- -------------

-- | /O(n)/ Monadic fold.
foldM :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m a
{-# INLINE foldM #-}
foldM :: forall (m :: * -> *) b a.
(Monad m, Prim b) =>
(a -> b -> m a) -> a -> Vector b -> m a
foldM = (a -> b -> m a) -> a -> Vector b -> m a
forall (m :: * -> *) (v :: * -> *) b a.
(Monad m, Vector v b) =>
(a -> b -> m a) -> a -> v b -> m a
G.foldM

-- | /O(n)/ Monadic fold using a function applied to each element and its index.
--
-- @since 0.12.2.0
ifoldM :: (Monad m, Prim b) => (a -> Int -> b -> m a) -> a -> Vector b -> m a
{-# INLINE ifoldM #-}
ifoldM :: forall (m :: * -> *) b a.
(Monad m, Prim b) =>
(a -> Int -> b -> m a) -> a -> Vector b -> m a
ifoldM = (a -> Int -> b -> m a) -> a -> Vector b -> m a
forall (m :: * -> *) (v :: * -> *) b a.
(Monad m, Vector v b) =>
(a -> Int -> b -> m a) -> a -> v b -> m a
G.ifoldM

-- | /O(n)/ Monadic fold over non-empty vectors.
fold1M :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m a
{-# INLINE fold1M #-}
fold1M :: forall (m :: * -> *) a.
(Monad m, Prim a) =>
(a -> a -> m a) -> Vector a -> m a
fold1M = (a -> a -> m a) -> Vector a -> m a
forall (m :: * -> *) (v :: * -> *) a.
(Monad m, Vector v a) =>
(a -> a -> m a) -> v a -> m a
G.fold1M

-- | /O(n)/ Monadic fold with strict accumulator.
foldM' :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m a
{-# INLINE foldM' #-}
foldM' :: forall (m :: * -> *) b a.
(Monad m, Prim b) =>
(a -> b -> m a) -> a -> Vector b -> m a
foldM' = (a -> b -> m a) -> a -> Vector b -> m a
forall (m :: * -> *) (v :: * -> *) b a.
(Monad m, Vector v b) =>
(a -> b -> m a) -> a -> v b -> m a
G.foldM'

-- | /O(n)/ Monadic fold with strict accumulator using a function applied to each
-- element and its index.
--
-- @since 0.12.2.0
ifoldM' :: (Monad m, Prim b) => (a -> Int -> b -> m a) -> a -> Vector b -> m a
{-# INLINE ifoldM' #-}
ifoldM' :: forall (m :: * -> *) b a.
(Monad m, Prim b) =>
(a -> Int -> b -> m a) -> a -> Vector b -> m a
ifoldM' = (a -> Int -> b -> m a) -> a -> Vector b -> m a
forall (m :: * -> *) (v :: * -> *) b a.
(Monad m, Vector v b) =>
(a -> Int -> b -> m a) -> a -> v b -> m a
G.ifoldM'

-- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator.
fold1M' :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m a
{-# INLINE fold1M' #-}
fold1M' :: forall (m :: * -> *) a.
(Monad m, Prim a) =>
(a -> a -> m a) -> Vector a -> m a
fold1M' = (a -> a -> m a) -> Vector a -> m a
forall (m :: * -> *) (v :: * -> *) a.
(Monad m, Vector v a) =>
(a -> a -> m a) -> v a -> m a
G.fold1M'

-- | /O(n)/ Monadic fold that discards the result.
foldM_ :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m ()
{-# INLINE foldM_ #-}
foldM_ :: forall (m :: * -> *) b a.
(Monad m, Prim b) =>
(a -> b -> m a) -> a -> Vector b -> m ()
foldM_ = (a -> b -> m a) -> a -> Vector b -> m ()
forall (m :: * -> *) (v :: * -> *) b a.
(Monad m, Vector v b) =>
(a -> b -> m a) -> a -> v b -> m ()
G.foldM_

-- | /O(n)/ Monadic fold that discards the result using a function applied to
-- each element and its index.
--
-- @since 0.12.2.0
ifoldM_ :: (Monad m, Prim b) => (a -> Int -> b -> m a) -> a -> Vector b -> m ()
{-# INLINE ifoldM_ #-}
ifoldM_ :: forall (m :: * -> *) b a.
(Monad m, Prim b) =>
(a -> Int -> b -> m a) -> a -> Vector b -> m ()
ifoldM_ = (a -> Int -> b -> m a) -> a -> Vector b -> m ()
forall (m :: * -> *) (v :: * -> *) b a.
(Monad m, Vector v b) =>
(a -> Int -> b -> m a) -> a -> v b -> m ()
G.ifoldM_

-- | /O(n)/ Monadic fold over non-empty vectors that discards the result.
fold1M_ :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m ()
{-# INLINE fold1M_ #-}
fold1M_ :: forall (m :: * -> *) a.
(Monad m, Prim a) =>
(a -> a -> m a) -> Vector a -> m ()
fold1M_ = (a -> a -> m a) -> Vector a -> m ()
forall (m :: * -> *) (v :: * -> *) a.
(Monad m, Vector v a) =>
(a -> a -> m a) -> v a -> m ()
G.fold1M_

-- | /O(n)/ Monadic fold with strict accumulator that discards the result.
foldM'_ :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m ()
{-# INLINE foldM'_ #-}
foldM'_ :: forall (m :: * -> *) b a.
(Monad m, Prim b) =>
(a -> b -> m a) -> a -> Vector b -> m ()
foldM'_ = (a -> b -> m a) -> a -> Vector b -> m ()
forall (m :: * -> *) (v :: * -> *) b a.
(Monad m, Vector v b) =>
(a -> b -> m a) -> a -> v b -> m ()
G.foldM'_

-- | /O(n)/ Monadic fold with strict accumulator that discards the result
-- using a function applied to each element and its index.
--
-- @since 0.12.2.0
ifoldM'_ :: (Monad m, Prim b)
         => (a -> Int -> b -> m a) -> a -> Vector b -> m ()
{-# INLINE ifoldM'_ #-}
ifoldM'_ :: forall (m :: * -> *) b a.
(Monad m, Prim b) =>
(a -> Int -> b -> m a) -> a -> Vector b -> m ()
ifoldM'_ = (a -> Int -> b -> m a) -> a -> Vector b -> m ()
forall (m :: * -> *) (v :: * -> *) b a.
(Monad m, Vector v b) =>
(a -> Int -> b -> m a) -> a -> v b -> m ()
G.ifoldM'_

-- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator
-- that discards the result.
fold1M'_ :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m ()
{-# INLINE fold1M'_ #-}
fold1M'_ :: forall (m :: * -> *) a.
(Monad m, Prim a) =>
(a -> a -> m a) -> Vector a -> m ()
fold1M'_ = (a -> a -> m a) -> Vector a -> m ()
forall (m :: * -> *) (v :: * -> *) a.
(Monad m, Vector v a) =>
(a -> a -> m a) -> v a -> m ()
G.fold1M'_

-- Scans
-- -----

-- | /O(n)/ Left-to-right prescan.
--
-- @
-- prescanl f z = 'init' . 'scanl' f z
-- @
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.prescanl (+) 0 (VP.fromList [1,2,3,4 :: Int])
-- [0,1,3,6]
prescanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
{-# INLINE prescanl #-}
prescanl :: forall a b.
(Prim a, Prim b) =>
(a -> b -> a) -> a -> Vector b -> Vector a
prescanl = (a -> b -> a) -> a -> Vector b -> Vector a
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> b -> a) -> a -> v b -> v a
G.prescanl

-- | /O(n)/ Left-to-right prescan with strict accumulator.
prescanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
{-# INLINE prescanl' #-}
prescanl' :: forall a b.
(Prim a, Prim b) =>
(a -> b -> a) -> a -> Vector b -> Vector a
prescanl' = (a -> b -> a) -> a -> Vector b -> Vector a
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> b -> a) -> a -> v b -> v a
G.prescanl'

-- | /O(n)/ Left-to-right postscan.
--
-- @
-- postscanl f z = 'tail' . 'scanl' f z
-- @
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.postscanl (+) 0 (VP.fromList [1,2,3,4 :: Int])
-- [1,3,6,10]
postscanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
{-# INLINE postscanl #-}
postscanl :: forall a b.
(Prim a, Prim b) =>
(a -> b -> a) -> a -> Vector b -> Vector a
postscanl = (a -> b -> a) -> a -> Vector b -> Vector a
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> b -> a) -> a -> v b -> v a
G.postscanl

-- | /O(n)/ Left-to-right postscan with strict accumulator.
postscanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
{-# INLINE postscanl' #-}
postscanl' :: forall a b.
(Prim a, Prim b) =>
(a -> b -> a) -> a -> Vector b -> Vector a
postscanl' = (a -> b -> a) -> a -> Vector b -> Vector a
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> b -> a) -> a -> v b -> v a
G.postscanl'

-- | /O(n)/ Left-to-right scan.
--
-- > scanl f z <x1,...,xn> = <y1,...,y(n+1)>
-- >   where y1 = z
-- >         yi = f y(i-1) x(i-1)
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.scanl (+) 0 (VP.fromList [1,2,3,4 :: Int])
-- [0,1,3,6,10]
scanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
{-# INLINE scanl #-}
scanl :: forall a b.
(Prim a, Prim b) =>
(a -> b -> a) -> a -> Vector b -> Vector a
scanl = (a -> b -> a) -> a -> Vector b -> Vector a
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> b -> a) -> a -> v b -> v a
G.scanl

-- | /O(n)/ Left-to-right scan with strict accumulator.
scanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a
{-# INLINE scanl' #-}
scanl' :: forall a b.
(Prim a, Prim b) =>
(a -> b -> a) -> a -> Vector b -> Vector a
scanl' = (a -> b -> a) -> a -> Vector b -> Vector a
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> b -> a) -> a -> v b -> v a
G.scanl'

-- | /O(n)/ Left-to-right scan over a vector with its index.
--
-- @since 0.12.2.0
iscanl :: (Prim a, Prim b) => (Int -> a -> b -> a) -> a -> Vector b -> Vector a
{-# INLINE iscanl #-}
iscanl :: forall a b.
(Prim a, Prim b) =>
(Int -> a -> b -> a) -> a -> Vector b -> Vector a
iscanl = (Int -> a -> b -> a) -> a -> Vector b -> Vector a
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(Int -> a -> b -> a) -> a -> v b -> v a
G.iscanl

-- | /O(n)/ Left-to-right scan over a vector (strictly) with its index.
--
-- @since 0.12.2.0
iscanl' :: (Prim a, Prim b) => (Int -> a -> b -> a) -> a -> Vector b -> Vector a
{-# INLINE iscanl' #-}
iscanl' :: forall a b.
(Prim a, Prim b) =>
(Int -> a -> b -> a) -> a -> Vector b -> Vector a
iscanl' = (Int -> a -> b -> a) -> a -> Vector b -> Vector a
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(Int -> a -> b -> a) -> a -> v b -> v a
G.iscanl'


-- | /O(n)/ Initial-value free left-to-right scan over a vector.
--
-- > scanl f <x1,...,xn> = <y1,...,yn>
-- >   where y1 = x1
-- >         yi = f y(i-1) xi
--
-- Note: Since 0.13, application of this to an empty vector no longer
-- results in an error; instead it produces an empty vector.
--
-- ==== __Examples__
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.scanl1 min $ VP.fromListN 5 [4,2,4,1,3 :: Int]
-- [4,2,2,1,1]
-- >>> VP.scanl1 max $ VP.fromListN 5 [1,3,2,5,4 :: Int]
-- [1,3,3,5,5]
-- >>> VP.scanl1 min (VP.empty :: VP.Vector Int)
-- []
scanl1 :: Prim a => (a -> a -> a) -> Vector a -> Vector a
{-# INLINE scanl1 #-}
scanl1 :: forall a. Prim a => (a -> a -> a) -> Vector a -> Vector a
scanl1 = (a -> a -> a) -> Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => (a -> a -> a) -> v a -> v a
G.scanl1

-- | /O(n)/ Initial-value free left-to-right scan over a vector with a strict accumulator.
--
-- Note: Since 0.13, application of this to an empty vector no longer
-- results in an error; instead it produces an empty vector.
--
-- ==== __Examples__
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.scanl1' min $ VP.fromListN 5 [4,2,4,1,3 :: Int]
-- [4,2,2,1,1]
-- >>> VP.scanl1' max $ VP.fromListN 5 [1,3,2,5,4 :: Int]
-- [1,3,3,5,5]
-- >>> VP.scanl1' min (VP.empty :: VP.Vector Int)
-- []
scanl1' :: Prim a => (a -> a -> a) -> Vector a -> Vector a
{-# INLINE scanl1' #-}
scanl1' :: forall a. Prim a => (a -> a -> a) -> Vector a -> Vector a
scanl1' = (a -> a -> a) -> Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => (a -> a -> a) -> v a -> v a
G.scanl1'

-- | /O(n)/ Right-to-left prescan.
--
-- @
-- prescanr f z = 'reverse' . 'prescanl' (flip f) z . 'reverse'
-- @
prescanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
{-# INLINE prescanr #-}
prescanr :: forall a b.
(Prim a, Prim b) =>
(a -> b -> b) -> b -> Vector a -> Vector b
prescanr = (a -> b -> b) -> b -> Vector a -> Vector b
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> b -> b) -> b -> v a -> v b
G.prescanr

-- | /O(n)/ Right-to-left prescan with strict accumulator.
prescanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
{-# INLINE prescanr' #-}
prescanr' :: forall a b.
(Prim a, Prim b) =>
(a -> b -> b) -> b -> Vector a -> Vector b
prescanr' = (a -> b -> b) -> b -> Vector a -> Vector b
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> b -> b) -> b -> v a -> v b
G.prescanr'

-- | /O(n)/ Right-to-left postscan.
postscanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
{-# INLINE postscanr #-}
postscanr :: forall a b.
(Prim a, Prim b) =>
(a -> b -> b) -> b -> Vector a -> Vector b
postscanr = (a -> b -> b) -> b -> Vector a -> Vector b
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> b -> b) -> b -> v a -> v b
G.postscanr

-- | /O(n)/ Right-to-left postscan with strict accumulator.
postscanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
{-# INLINE postscanr' #-}
postscanr' :: forall a b.
(Prim a, Prim b) =>
(a -> b -> b) -> b -> Vector a -> Vector b
postscanr' = (a -> b -> b) -> b -> Vector a -> Vector b
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> b -> b) -> b -> v a -> v b
G.postscanr'

-- | /O(n)/ Right-to-left scan.
scanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
{-# INLINE scanr #-}
scanr :: forall a b.
(Prim a, Prim b) =>
(a -> b -> b) -> b -> Vector a -> Vector b
scanr = (a -> b -> b) -> b -> Vector a -> Vector b
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> b -> b) -> b -> v a -> v b
G.scanr

-- | /O(n)/ Right-to-left scan with strict accumulator.
scanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b
{-# INLINE scanr' #-}
scanr' :: forall a b.
(Prim a, Prim b) =>
(a -> b -> b) -> b -> Vector a -> Vector b
scanr' = (a -> b -> b) -> b -> Vector a -> Vector b
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> b -> b) -> b -> v a -> v b
G.scanr'

-- | /O(n)/ Right-to-left scan over a vector with its index.
--
-- @since 0.12.2.0
iscanr :: (Prim a, Prim b) => (Int -> a -> b -> b) -> b -> Vector a -> Vector b
{-# INLINE iscanr #-}
iscanr :: forall a b.
(Prim a, Prim b) =>
(Int -> a -> b -> b) -> b -> Vector a -> Vector b
iscanr = (Int -> a -> b -> b) -> b -> Vector a -> Vector b
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(Int -> a -> b -> b) -> b -> v a -> v b
G.iscanr

-- | /O(n)/ Right-to-left scan over a vector (strictly) with its index.
--
-- @since 0.12.2.0
iscanr' :: (Prim a, Prim b) => (Int -> a -> b -> b) -> b -> Vector a -> Vector b
{-# INLINE iscanr' #-}
iscanr' :: forall a b.
(Prim a, Prim b) =>
(Int -> a -> b -> b) -> b -> Vector a -> Vector b
iscanr' = (Int -> a -> b -> b) -> b -> Vector a -> Vector b
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(Int -> a -> b -> b) -> b -> v a -> v b
G.iscanr'

-- | /O(n)/ Right-to-left, initial-value free scan over a vector.
--
-- Note: Since 0.13, application of this to an empty vector no longer
-- results in an error; instead it produces an empty vector.
--
-- ==== __Examples__
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.scanr1 min $ VP.fromListN 5 [3,1,4,2,4 :: Int]
-- [1,1,2,2,4]
-- >>> VP.scanr1 max $ VP.fromListN 5 [4,5,2,3,1 :: Int]
-- [5,5,3,3,1]
-- >>> VP.scanr1 min (VP.empty :: VP.Vector Int)
-- []
scanr1 :: Prim a => (a -> a -> a) -> Vector a -> Vector a
{-# INLINE scanr1 #-}
scanr1 :: forall a. Prim a => (a -> a -> a) -> Vector a -> Vector a
scanr1 = (a -> a -> a) -> Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => (a -> a -> a) -> v a -> v a
G.scanr1

-- | /O(n)/ Right-to-left, initial-value free scan over a vector with a strict
-- accumulator.
--
-- Note: Since 0.13, application of this to an empty vector no longer
-- results in an error; instead it produces an empty vector.
--
-- ==== __Examples__
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.scanr1' min $ VP.fromListN 5 [3,1,4,2,4 :: Int]
-- [1,1,2,2,4]
-- >>> VP.scanr1' max $ VP.fromListN 5 [4,5,2,3,1 :: Int]
-- [5,5,3,3,1]
-- >>> VP.scanr1' min (VP.empty :: VP.Vector Int)
-- []
scanr1' :: Prim a => (a -> a -> a) -> Vector a -> Vector a
{-# INLINE scanr1' #-}
scanr1' :: forall a. Prim a => (a -> a -> a) -> Vector a -> Vector a
scanr1' = (a -> a -> a) -> Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => (a -> a -> a) -> v a -> v a
G.scanr1'

-- Comparisons
-- ------------------------

-- | /O(n)/ Check if two vectors are equal using the supplied equality
-- predicate.
--
-- @since 0.12.2.0
eqBy :: (Prim a, Prim b) => (a -> b -> Bool) -> Vector a -> Vector b -> Bool
{-# INLINE eqBy #-}
eqBy :: forall a b.
(Prim a, Prim b) =>
(a -> b -> Bool) -> Vector a -> Vector b -> Bool
eqBy = (a -> b -> Bool) -> Vector a -> Vector b -> Bool
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> b -> Bool) -> v a -> v b -> Bool
G.eqBy

-- | /O(n)/ Compare two vectors using the supplied comparison function for
-- vector elements. Comparison works the same as for lists.
--
-- > cmpBy compare == compare
--
-- @since 0.12.2.0
cmpBy :: (Prim a, Prim b) => (a -> b -> Ordering) -> Vector a -> Vector b -> Ordering
cmpBy :: forall a b.
(Prim a, Prim b) =>
(a -> b -> Ordering) -> Vector a -> Vector b -> Ordering
cmpBy = (a -> b -> Ordering) -> Vector a -> Vector b -> Ordering
forall (v :: * -> *) a b.
(Vector v a, Vector v b) =>
(a -> b -> Ordering) -> v a -> v b -> Ordering
G.cmpBy

-- Conversions - Lists
-- ------------------------

-- | /O(n)/ Convert a vector to a list.
toList :: Prim a => Vector a -> [a]
{-# INLINE toList #-}
toList :: forall a. Prim a => Vector a -> [a]
toList = Vector a -> [a]
forall (v :: * -> *) a. Vector v a => v a -> [a]
G.toList

-- | /O(n)/ Convert a list to a vector.
fromList :: Prim a => [a] -> Vector a
{-# INLINE fromList #-}
fromList :: forall a. Prim a => [a] -> Vector a
fromList = [a] -> Vector a
forall (v :: * -> *) a. Vector v a => [a] -> v a
G.fromList

-- | /O(n)/ Convert the first @n@ elements of a list to a vector. It's
-- expected that the supplied list will be exactly @n@ elements long. As
-- an optimization, this function allocates a buffer for @n@ elements, which
-- could be used for DoS-attacks by exhausting the memory if an attacker controls
-- that parameter.
--
-- @
-- fromListN n xs = 'fromList' ('take' n xs)
-- @
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Primitive as VP
-- >>> VP.fromListN 3 [1,2,3,4,5 :: Int]
-- [1,2,3]
-- >>> VP.fromListN 3 [1 :: Int]
-- [1]
fromListN :: Prim a => Int -> [a] -> Vector a
{-# INLINE fromListN #-}
fromListN :: forall a. Prim a => Int -> [a] -> Vector a
fromListN = Int -> [a] -> Vector a
forall (v :: * -> *) a. Vector v a => Int -> [a] -> v a
G.fromListN

-- Conversions - Unsafe casts
-- --------------------------

-- | /O(1)/ Unsafely cast a vector from one element type to another.
-- This operation just changes the type of the vector and does not
-- modify the elements.
--
-- This function will throw an error if elements are of mismatching sizes.
--
-- | @since 0.13.0.0
unsafeCast :: forall a b. (HasCallStack, Prim a, Prim b) => Vector a -> Vector b
{-# INLINE unsafeCast #-}
unsafeCast :: forall a b. (HasCallStack, Prim a, Prim b) => Vector a -> Vector b
unsafeCast (Vector Int
o Int
n ByteArray
ba)
  | a -> Int
forall a. Prim a => a -> Int
sizeOf (a
forall a. HasCallStack => a
undefined :: a) Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== b -> Int
forall a. Prim a => a -> Int
sizeOf (b
forall a. HasCallStack => a
undefined :: b) = Int -> Int -> ByteArray -> Vector b
forall a. Int -> Int -> ByteArray -> Vector a
Vector Int
o Int
n ByteArray
ba
  | Bool
otherwise = String -> Vector b
forall a. HasCallStack => String -> a
error String
"Element size mismatch"

-- Conversions - Mutable vectors
-- -----------------------------

-- | /O(1)/ Unsafely convert a mutable vector to an immutable one without
-- copying. The mutable vector may not be used after this operation.
unsafeFreeze :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> m (Vector a)
{-# INLINE unsafeFreeze #-}
unsafeFreeze :: forall a (m :: * -> *).
(Prim a, PrimMonad m) =>
MVector (PrimState m) a -> m (Vector a)
unsafeFreeze = Mutable Vector (PrimState m) a -> m (Vector a)
MVector (PrimState m) a -> m (Vector a)
forall (m :: * -> *) (v :: * -> *) a.
(PrimMonad m, Vector v a) =>
Mutable v (PrimState m) a -> m (v a)
G.unsafeFreeze

-- | /O(n)/ Yield an immutable copy of the mutable vector.
freeze :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> m (Vector a)
{-# INLINE freeze #-}
freeze :: forall a (m :: * -> *).
(Prim a, PrimMonad m) =>
MVector (PrimState m) a -> m (Vector a)
freeze = Mutable Vector (PrimState m) a -> m (Vector a)
MVector (PrimState m) a -> m (Vector a)
forall (m :: * -> *) (v :: * -> *) a.
(PrimMonad m, Vector v a) =>
Mutable v (PrimState m) a -> m (v a)
G.freeze

-- | /O(1)/ Unsafely convert an immutable vector to a mutable one
-- without copying. Note that this is a very dangerous function and
-- generally it's only safe to read from the resulting vector. In this
-- case, the immutable vector could be used safely as well.
--
-- Problems with mutation happen because GHC has a lot of freedom to
-- introduce sharing. As a result mutable vectors produced by
-- @unsafeThaw@ may or may not share the same underlying buffer. For
-- example:
--
-- > foo = do
-- >   let vec = V.generate 10 id
-- >   mvec <- V.unsafeThaw vec
-- >   do_something mvec
--
-- Here GHC could lift @vec@ outside of foo which means that all calls to
-- @do_something@ will use same buffer with possibly disastrous
-- results. Whether such aliasing happens or not depends on the program in
-- question, optimization levels, and GHC flags.
--
-- All in all, attempts to modify a vector produced by @unsafeThaw@ fall out of
-- domain of software engineering and into realm of black magic, dark
-- rituals, and unspeakable horrors. The only advice that could be given
-- is: "Don't attempt to mutate a vector produced by @unsafeThaw@ unless you
-- know how to prevent GHC from aliasing buffers accidentally. We don't."
unsafeThaw :: (Prim a, PrimMonad m) => Vector a -> m (MVector (PrimState m) a)
{-# INLINE unsafeThaw #-}
unsafeThaw :: forall a (m :: * -> *).
(Prim a, PrimMonad m) =>
Vector a -> m (MVector (PrimState m) a)
unsafeThaw = Vector a -> m (Mutable Vector (PrimState m) a)
Vector a -> m (MVector (PrimState m) a)
forall (m :: * -> *) (v :: * -> *) a.
(PrimMonad m, Vector v a) =>
v a -> m (Mutable v (PrimState m) a)
G.unsafeThaw

-- | /O(n)/ Yield a mutable copy of an immutable vector.
thaw :: (Prim a, PrimMonad m) => Vector a -> m (MVector (PrimState m) a)
{-# INLINE thaw #-}
thaw :: forall a (m :: * -> *).
(Prim a, PrimMonad m) =>
Vector a -> m (MVector (PrimState m) a)
thaw = Vector a -> m (Mutable Vector (PrimState m) a)
Vector a -> m (MVector (PrimState m) a)
forall (m :: * -> *) (v :: * -> *) a.
(PrimMonad m, Vector v a) =>
v a -> m (Mutable v (PrimState m) a)
G.thaw

-- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
-- have the same length. This is not checked.
unsafeCopy
  :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m ()
{-# INLINE unsafeCopy #-}
unsafeCopy :: forall a (m :: * -> *).
(Prim a, PrimMonad m) =>
MVector (PrimState m) a -> Vector a -> m ()
unsafeCopy = Mutable Vector (PrimState m) a -> Vector a -> m ()
MVector (PrimState m) a -> Vector a -> m ()
forall (m :: * -> *) (v :: * -> *) a.
(PrimMonad m, Vector v a) =>
Mutable v (PrimState m) a -> v a -> m ()
G.unsafeCopy

-- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must
-- have the same length.
copy :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m ()
{-# INLINE copy #-}
copy :: forall a (m :: * -> *).
(Prim a, PrimMonad m) =>
MVector (PrimState m) a -> Vector a -> m ()
copy = Mutable Vector (PrimState m) a -> Vector a -> m ()
MVector (PrimState m) a -> Vector a -> m ()
forall (m :: * -> *) (v :: * -> *) a.
(HasCallStack, PrimMonad m, Vector v a) =>
Mutable v (PrimState m) a -> v a -> m ()
G.copy

-- $setup
-- >>> import Prelude (($), min, even, max, succ)