Copyright | (c) Roman Leshchinskiy 2008-2010 Alexey Kuleshevich 2020-2022 Aleksey Khudyakov 2020-2022 Andrew Lelechenko 2020-2022 |
---|---|
License | BSD-style |
Maintainer | Haskell Libraries Team <libraries@haskell.org> |
Stability | experimental |
Portability | non-portable |
Safe Haskell | None |
Language | Haskell2010 |
Bundles for stream fusion
Synopsis
- data Step s a where
- data Chunk (v :: Type -> Type) a = Chunk Int (forall (m :: Type -> Type). (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> m ())
- type Bundle = Bundle Id
- type MBundle = Bundle
- inplace :: forall a b (v :: Type -> Type). (forall (m :: Type -> Type). Monad m => Stream m a -> Stream m b) -> (Size -> Size) -> Bundle v a -> Bundle v b
- size :: forall (v :: Type -> Type) a. Bundle v a -> Size
- sized :: forall (v :: Type -> Type) a. Bundle v a -> Size -> Bundle v a
- length :: forall (v :: Type -> Type) a. Bundle v a -> Int
- null :: forall (v :: Type -> Type) a. Bundle v a -> Bool
- empty :: forall (v :: Type -> Type) a. Bundle v a
- singleton :: forall a (v :: Type -> Type). a -> Bundle v a
- cons :: forall a (v :: Type -> Type). a -> Bundle v a -> Bundle v a
- snoc :: forall (v :: Type -> Type) a. Bundle v a -> a -> Bundle v a
- replicate :: forall a (v :: Type -> Type). Int -> a -> Bundle v a
- generate :: forall a (v :: Type -> Type). Int -> (Int -> a) -> Bundle v a
- (++) :: forall (v :: Type -> Type) a. Bundle v a -> Bundle v a -> Bundle v a
- head :: forall (v :: Type -> Type) a. Bundle v a -> a
- last :: forall (v :: Type -> Type) a. Bundle v a -> a
- (!!) :: forall (v :: Type -> Type) a. Bundle v a -> Int -> a
- (!?) :: forall (v :: Type -> Type) a. Bundle v a -> Int -> Maybe a
- slice :: forall (v :: Type -> Type) a. Int -> Int -> Bundle v a -> Bundle v a
- init :: forall (v :: Type -> Type) a. Bundle v a -> Bundle v a
- tail :: forall (v :: Type -> Type) a. Bundle v a -> Bundle v a
- take :: forall (v :: Type -> Type) a. Int -> Bundle v a -> Bundle v a
- drop :: forall (v :: Type -> Type) a. Int -> Bundle v a -> Bundle v a
- map :: forall a b (v :: Type -> Type). (a -> b) -> Bundle v a -> Bundle v b
- concatMap :: forall a (v :: Type -> Type) b. (a -> Bundle v b) -> Bundle v a -> Bundle v b
- flatten :: forall a s b (v :: Type -> Type). (a -> s) -> (s -> Step s b) -> Size -> Bundle v a -> Bundle v b
- unbox :: forall (v :: Type -> Type) a. Bundle v (Box a) -> Bundle v a
- indexed :: forall (v :: Type -> Type) a. Bundle v a -> Bundle v (Int, a)
- indexedR :: forall (v :: Type -> Type) a. Int -> Bundle v a -> Bundle v (Int, a)
- zipWith :: forall a b c (v :: Type -> Type). (a -> b -> c) -> Bundle v a -> Bundle v b -> Bundle v c
- zipWith3 :: forall a b c d (v :: Type -> Type). (a -> b -> c -> d) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
- zipWith4 :: forall a b c d e (v :: Type -> Type). (a -> b -> c -> d -> e) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v e
- zipWith5 :: forall a b c d e f (v :: Type -> Type). (a -> b -> c -> d -> e -> f) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v e -> Bundle v f
- zipWith6 :: forall a b c d e f g (v :: Type -> Type). (a -> b -> c -> d -> e -> f -> g) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v e -> Bundle v f -> Bundle v g
- zip :: forall (v :: Type -> Type) a b. Bundle v a -> Bundle v b -> Bundle v (a, b)
- zip3 :: forall (v :: Type -> Type) a b c. Bundle v a -> Bundle v b -> Bundle v c -> Bundle v (a, b, c)
- zip4 :: forall (v :: Type -> Type) a b c d. Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v (a, b, c, d)
- zip5 :: forall (v :: Type -> Type) a b c d e. Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v e -> Bundle v (a, b, c, d, e)
- zip6 :: forall (v :: Type -> Type) a b c d e f. Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v e -> Bundle v f -> Bundle v (a, b, c, d, e, f)
- filter :: forall a (v :: Type -> Type). (a -> Bool) -> Bundle v a -> Bundle v a
- takeWhile :: forall a (v :: Type -> Type). (a -> Bool) -> Bundle v a -> Bundle v a
- dropWhile :: forall a (v :: Type -> Type). (a -> Bool) -> Bundle v a -> Bundle v a
- elem :: forall a (v :: Type -> Type). Eq a => a -> Bundle v a -> Bool
- notElem :: forall a (v :: Type -> Type). Eq a => a -> Bundle v a -> Bool
- find :: forall a (v :: Type -> Type). (a -> Bool) -> Bundle v a -> Maybe a
- findIndex :: forall a (v :: Type -> Type). (a -> Bool) -> Bundle v a -> Maybe Int
- foldl :: forall a b (v :: Type -> Type). (a -> b -> a) -> a -> Bundle v b -> a
- foldl1 :: forall a (v :: Type -> Type). (a -> a -> a) -> Bundle v a -> a
- foldl' :: forall a b (v :: Type -> Type). (a -> b -> a) -> a -> Bundle v b -> a
- foldl1' :: forall a (v :: Type -> Type). (a -> a -> a) -> Bundle v a -> a
- foldr :: forall a b (v :: Type -> Type). (a -> b -> b) -> b -> Bundle v a -> b
- foldr1 :: forall a (v :: Type -> Type). (a -> a -> a) -> Bundle v a -> a
- and :: forall (v :: Type -> Type). Bundle v Bool -> Bool
- or :: forall (v :: Type -> Type). Bundle v Bool -> Bool
- unfoldr :: forall s a (v :: Type -> Type). (s -> Maybe (a, s)) -> s -> Bundle v a
- unfoldrN :: forall s a (v :: Type -> Type). Int -> (s -> Maybe (a, s)) -> s -> Bundle v a
- unfoldrExactN :: forall s a (v :: Type -> Type). Int -> (s -> (a, s)) -> s -> Bundle v a
- iterateN :: forall a (v :: Type -> Type). Int -> (a -> a) -> a -> Bundle v a
- prescanl :: forall a b (v :: Type -> Type). (a -> b -> a) -> a -> Bundle v b -> Bundle v a
- prescanl' :: forall a b (v :: Type -> Type). (a -> b -> a) -> a -> Bundle v b -> Bundle v a
- postscanl :: forall a b (v :: Type -> Type). (a -> b -> a) -> a -> Bundle v b -> Bundle v a
- postscanl' :: forall a b (v :: Type -> Type). (a -> b -> a) -> a -> Bundle v b -> Bundle v a
- scanl :: forall a b (v :: Type -> Type). (a -> b -> a) -> a -> Bundle v b -> Bundle v a
- scanl' :: forall a b (v :: Type -> Type). (a -> b -> a) -> a -> Bundle v b -> Bundle v a
- scanl1 :: forall a (v :: Type -> Type). (a -> a -> a) -> Bundle v a -> Bundle v a
- scanl1' :: forall a (v :: Type -> Type). (a -> a -> a) -> Bundle v a -> Bundle v a
- enumFromStepN :: forall a (v :: Type -> Type). Num a => a -> a -> Int -> Bundle v a
- enumFromTo :: forall a (v :: Type -> Type). Enum a => a -> a -> Bundle v a
- enumFromThenTo :: forall a (v :: Type -> Type). Enum a => a -> a -> a -> Bundle v a
- toList :: forall (v :: Type -> Type) a. Bundle v a -> [a]
- fromList :: forall a (v :: Type -> Type). [a] -> Bundle v a
- fromListN :: forall a (v :: Type -> Type). Int -> [a] -> Bundle v a
- unsafeFromList :: forall a (v :: Type -> Type). Size -> [a] -> Bundle v a
- lift :: forall (m :: Type -> Type) (v :: Type -> Type) a. Monad m => Bundle Id v a -> Bundle m v a
- fromVector :: Vector v a => v a -> Bundle v a
- reVector :: forall (u :: Type -> Type) a (v :: Type -> Type). Bundle u a -> Bundle v a
- fromVectors :: Vector v a => [v a] -> Bundle v a
- concatVectors :: forall v a (u :: Type -> Type). Vector v a => Bundle u (v a) -> Bundle v a
- mapM :: forall m a b (v :: Type -> Type). Monad m => (a -> m b) -> Bundle v a -> Bundle m v b
- mapM_ :: forall m a b (v :: Type -> Type). Monad m => (a -> m b) -> Bundle v a -> m ()
- zipWithM :: forall m a b c (v :: Type -> Type). Monad m => (a -> b -> m c) -> Bundle v a -> Bundle v b -> Bundle m v c
- zipWithM_ :: forall m a b c (v :: Type -> Type). Monad m => (a -> b -> m c) -> Bundle v a -> Bundle v b -> m ()
- filterM :: forall m a (v :: Type -> Type). Monad m => (a -> m Bool) -> Bundle v a -> Bundle m v a
- mapMaybeM :: forall m a b (v :: Type -> Type). Monad m => (a -> m (Maybe b)) -> Bundle v a -> Bundle m v b
- foldM :: forall m a b (v :: Type -> Type). Monad m => (a -> b -> m a) -> a -> Bundle v b -> m a
- fold1M :: forall m a (v :: Type -> Type). Monad m => (a -> a -> m a) -> Bundle v a -> m a
- foldM' :: forall m a b (v :: Type -> Type). Monad m => (a -> b -> m a) -> a -> Bundle v b -> m a
- fold1M' :: forall m a (v :: Type -> Type). Monad m => (a -> a -> m a) -> Bundle v a -> m a
- eq :: forall a (v :: Type -> Type). Eq a => Bundle v a -> Bundle v a -> Bool
- cmp :: forall a (v :: Type -> Type). Ord a => Bundle v a -> Bundle v a -> Ordering
- eqBy :: forall a b (v :: Type -> Type). (a -> b -> Bool) -> Bundle v a -> Bundle v b -> Bool
- cmpBy :: forall a b (v :: Type -> Type). (a -> b -> Ordering) -> Bundle v a -> Bundle v b -> Ordering
Types
Result of taking a single step in a stream
In-place markers
inplace :: forall a b (v :: Type -> Type). (forall (m :: Type -> Type). Monad m => Stream m a -> Stream m b) -> (Size -> Size) -> Bundle v a -> Bundle v b Source #
Size hints
Length information
Construction
replicate :: forall a (v :: Type -> Type). Int -> a -> Bundle v a Source #
Replicate a value to a given length
generate :: forall a (v :: Type -> Type). Int -> (Int -> a) -> Bundle v a Source #
Generate a stream from its indices
(++) :: forall (v :: Type -> Type) a. Bundle v a -> Bundle v a -> Bundle v a infixr 5 Source #
Concatenate two Bundle
s
Accessing individual elements
head :: forall (v :: Type -> Type) a. Bundle v a -> a Source #
First element of the Bundle
or error if empty
last :: forall (v :: Type -> Type) a. Bundle v a -> a Source #
Last element of the Bundle
or error if empty
(!!) :: forall (v :: Type -> Type) a. Bundle v a -> Int -> a infixl 9 Source #
Element at the given position
(!?) :: forall (v :: Type -> Type) a. Bundle v a -> Int -> Maybe a infixl 9 Source #
Element at the given position or Nothing
if out of bounds
Substreams
Extract a substream of the given length starting at the given position.
drop :: forall (v :: Type -> Type) a. Int -> Bundle v a -> Bundle v a Source #
All but the first n
elements
Mapping
map :: forall a b (v :: Type -> Type). (a -> b) -> Bundle v a -> Bundle v b Source #
Map a function over a Bundle
flatten :: forall a s b (v :: Type -> Type). (a -> s) -> (s -> Step s b) -> Size -> Bundle v a -> Bundle v b Source #
Zipping
indexed :: forall (v :: Type -> Type) a. Bundle v a -> Bundle v (Int, a) Source #
Pair each element in a Bundle
with its index
indexedR :: forall (v :: Type -> Type) a. Int -> Bundle v a -> Bundle v (Int, a) Source #
Pair each element in a Bundle
with its index, starting from the right
and counting down
zipWith :: forall a b c (v :: Type -> Type). (a -> b -> c) -> Bundle v a -> Bundle v b -> Bundle v c Source #
Zip two Bundle
s with the given function
zipWith3 :: forall a b c d (v :: Type -> Type). (a -> b -> c -> d) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d Source #
Zip three Bundle
s with the given function
zipWith4 :: forall a b c d e (v :: Type -> Type). (a -> b -> c -> d -> e) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v e Source #
zipWith5 :: forall a b c d e f (v :: Type -> Type). (a -> b -> c -> d -> e -> f) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v e -> Bundle v f Source #
zipWith6 :: forall a b c d e f g (v :: Type -> Type). (a -> b -> c -> d -> e -> f -> g) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v e -> Bundle v f -> Bundle v g Source #
zip3 :: forall (v :: Type -> Type) a b c. Bundle v a -> Bundle v b -> Bundle v c -> Bundle v (a, b, c) Source #
zip4 :: forall (v :: Type -> Type) a b c d. Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v (a, b, c, d) Source #
zip5 :: forall (v :: Type -> Type) a b c d e. Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v e -> Bundle v (a, b, c, d, e) Source #
zip6 :: forall (v :: Type -> Type) a b c d e f. Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d -> Bundle v e -> Bundle v f -> Bundle v (a, b, c, d, e, f) Source #
Filtering
filter :: forall a (v :: Type -> Type). (a -> Bool) -> Bundle v a -> Bundle v a Source #
Drop elements which do not satisfy the predicate
takeWhile :: forall a (v :: Type -> Type). (a -> Bool) -> Bundle v a -> Bundle v a Source #
Longest prefix of elements that satisfy the predicate
dropWhile :: forall a (v :: Type -> Type). (a -> Bool) -> Bundle v a -> Bundle v a Source #
Drop the longest prefix of elements that satisfy the predicate
Searching
elem :: forall a (v :: Type -> Type). Eq a => a -> Bundle v a -> Bool infix 4 Source #
Check whether the Bundle
contains an element
notElem :: forall a (v :: Type -> Type). Eq a => a -> Bundle v a -> Bool infix 4 Source #
Inverse of elem
find :: forall a (v :: Type -> Type). (a -> Bool) -> Bundle v a -> Maybe a Source #
Yield Just
the first element matching the predicate or Nothing
if no
such element exists.
findIndex :: forall a (v :: Type -> Type). (a -> Bool) -> Bundle v a -> Maybe Int Source #
Yield Just
the index of the first element matching the predicate or
Nothing
if no such element exists.
Folding
foldl1 :: forall a (v :: Type -> Type). (a -> a -> a) -> Bundle v a -> a Source #
Left fold on non-empty Bundle
s
foldl' :: forall a b (v :: Type -> Type). (a -> b -> a) -> a -> Bundle v b -> a Source #
Left fold with strict accumulator
foldl1' :: forall a (v :: Type -> Type). (a -> a -> a) -> Bundle v a -> a Source #
Left fold on non-empty Bundle
s with strict accumulator
foldr1 :: forall a (v :: Type -> Type). (a -> a -> a) -> Bundle v a -> a Source #
Right fold on non-empty Bundle
s
Specialised folds
Unfolding
unfoldrN :: forall s a (v :: Type -> Type). Int -> (s -> Maybe (a, s)) -> s -> Bundle v a Source #
Unfold at most n
elements
unfoldrExactN :: forall s a (v :: Type -> Type). Int -> (s -> (a, s)) -> s -> Bundle v a Source #
Unfold exactly n
elements
Since: 0.12.2.0
iterateN :: forall a (v :: Type -> Type). Int -> (a -> a) -> a -> Bundle v a Source #
O(n) Apply function \(\max(n - 1, 0)\) times to an initial value, producing a pure bundle of exact length \(\max(n, 0)\). Zeroth element will contain the initial value.
Scans
prescanl :: forall a b (v :: Type -> Type). (a -> b -> a) -> a -> Bundle v b -> Bundle v a Source #
Prefix scan
prescanl' :: forall a b (v :: Type -> Type). (a -> b -> a) -> a -> Bundle v b -> Bundle v a Source #
Prefix scan with strict accumulator
postscanl :: forall a b (v :: Type -> Type). (a -> b -> a) -> a -> Bundle v b -> Bundle v a Source #
Suffix scan
postscanl' :: forall a b (v :: Type -> Type). (a -> b -> a) -> a -> Bundle v b -> Bundle v a Source #
Suffix scan with strict accumulator
scanl :: forall a b (v :: Type -> Type). (a -> b -> a) -> a -> Bundle v b -> Bundle v a Source #
Haskell-style scan
scanl' :: forall a b (v :: Type -> Type). (a -> b -> a) -> a -> Bundle v b -> Bundle v a Source #
Haskell-style scan with strict accumulator
scanl1 :: forall a (v :: Type -> Type). (a -> a -> a) -> Bundle v a -> Bundle v a Source #
Initial-value free scan over a Bundle
scanl1' :: forall a (v :: Type -> Type). (a -> a -> a) -> Bundle v a -> Bundle v a Source #
Initial-value free scan over a Bundle
with a strict accumulator
Enumerations
enumFromStepN :: forall a (v :: Type -> Type). Num a => a -> a -> Int -> Bundle v a Source #
Yield a Bundle
of the given length containing the values x
, x+y
,
x+y+y
etc.
enumFromTo :: forall a (v :: Type -> Type). Enum a => a -> a -> Bundle v a Source #
Enumerate values
WARNING: This operations can be very inefficient. If at all possible, use
enumFromStepN
instead.
enumFromThenTo :: forall a (v :: Type -> Type). Enum a => a -> a -> a -> Bundle v a Source #
Enumerate values with a given step.
WARNING: This operations is very inefficient. If at all possible, use
enumFromStepN
instead.
Conversions
fromListN :: forall a (v :: Type -> Type). Int -> [a] -> Bundle v a Source #
Create a Bundle
from the first n
elements of a list
fromListN n xs = fromList (take n xs)
lift :: forall (m :: Type -> Type) (v :: Type -> Type) a. Monad m => Bundle Id v a -> Bundle m v a Source #
Convert a pure stream to a monadic stream
fromVector :: Vector v a => v a -> Bundle v a Source #
fromVectors :: Vector v a => [v a] -> Bundle v a Source #
concatVectors :: forall v a (u :: Type -> Type). Vector v a => Bundle u (v a) -> Bundle v a Source #
Monadic combinators
mapM :: forall m a b (v :: Type -> Type). Monad m => (a -> m b) -> Bundle v a -> Bundle m v b Source #
Apply a monadic action to each element of the stream, producing a monadic stream of results
mapM_ :: forall m a b (v :: Type -> Type). Monad m => (a -> m b) -> Bundle v a -> m () Source #
Apply a monadic action to each element of the stream
zipWithM :: forall m a b c (v :: Type -> Type). Monad m => (a -> b -> m c) -> Bundle v a -> Bundle v b -> Bundle m v c Source #
zipWithM_ :: forall m a b c (v :: Type -> Type). Monad m => (a -> b -> m c) -> Bundle v a -> Bundle v b -> m () Source #
filterM :: forall m a (v :: Type -> Type). Monad m => (a -> m Bool) -> Bundle v a -> Bundle m v a Source #
Yield a monadic stream of elements that satisfy the monadic predicate
mapMaybeM :: forall m a b (v :: Type -> Type). Monad m => (a -> m (Maybe b)) -> Bundle v a -> Bundle m v b Source #
O(n) Apply monadic function to each element of a bundle and discard elements returning Nothing.
Since: 0.12.2.0
foldM :: forall m a b (v :: Type -> Type). Monad m => (a -> b -> m a) -> a -> Bundle v b -> m a Source #
Monadic fold
fold1M :: forall m a (v :: Type -> Type). Monad m => (a -> a -> m a) -> Bundle v a -> m a Source #
Monadic fold over non-empty stream
foldM' :: forall m a b (v :: Type -> Type). Monad m => (a -> b -> m a) -> a -> Bundle v b -> m a Source #
Monadic fold with strict accumulator
fold1M' :: forall m a (v :: Type -> Type). Monad m => (a -> a -> m a) -> Bundle v a -> m a Source #
Monad fold over non-empty stream with strict accumulator
eq :: forall a (v :: Type -> Type). Eq a => Bundle v a -> Bundle v a -> Bool Source #
Check if two Bundle
s are equal
cmp :: forall a (v :: Type -> Type). Ord a => Bundle v a -> Bundle v a -> Ordering Source #
Lexicographically compare two Bundle
s
eqBy :: forall a b (v :: Type -> Type). (a -> b -> Bool) -> Bundle v a -> Bundle v b -> Bool Source #
cmpBy :: forall a b (v :: Type -> Type). (a -> b -> Ordering) -> Bundle v a -> Bundle v b -> Ordering Source #
Orphan instances
Eq1 (Bundle Id v) Source # | |
Ord1 (Bundle Id v) Source # | |
Eq a => Eq (Bundle Id v a) Source # | |
Ord a => Ord (Bundle Id v a) Source # | |
compare :: Bundle Id v a -> Bundle Id v a -> Ordering # (<) :: Bundle Id v a -> Bundle Id v a -> Bool # (<=) :: Bundle Id v a -> Bundle Id v a -> Bool # (>) :: Bundle Id v a -> Bundle Id v a -> Bool # (>=) :: Bundle Id v a -> Bundle Id v a -> Bool # |