{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveLift #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskellQuotes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE UnboxedSums #-}
{-# LANGUAGE UnboxedTuples #-}
{-# OPTIONS_GHC -fno-full-laziness -funbox-strict-fields #-}
{-# OPTIONS_HADDOCK not-home #-}
module Data.HashMap.Internal
(
HashMap(..)
, Leaf(..)
, empty
, singleton
, null
, size
, member
, lookup
, (!?)
, findWithDefault
, lookupDefault
, (!)
, insert
, insertWith
, unsafeInsert
, delete
, adjust
, update
, alter
, alterF
, isSubmapOf
, isSubmapOfBy
, union
, unionWith
, unionWithKey
, unions
, compose
, map
, mapWithKey
, traverseWithKey
, mapKeys
, difference
, differenceWith
, intersection
, intersectionWith
, intersectionWithKey
, intersectionWithKey#
, foldr'
, foldl'
, foldrWithKey'
, foldlWithKey'
, foldr
, foldl
, foldrWithKey
, foldlWithKey
, foldMapWithKey
, mapMaybe
, mapMaybeWithKey
, filter
, filterWithKey
, keys
, elems
, toList
, fromList
, fromListWith
, fromListWithKey
, Hash
, Bitmap
, Shift
, bitmapIndexedOrFull
, collision
, hash
, mask
, index
, bitsPerSubkey
, maxChildren
, isLeafOrCollision
, fullBitmap
, subkeyMask
, nextShift
, sparseIndex
, two
, unionArrayBy
, update32
, update32M
, update32With'
, updateOrConcatWithKey
, filterMapAux
, equalKeys
, equalKeys1
, lookupRecordCollision
, LookupRes(..)
, lookupResToMaybe
, insert'
, delete'
, lookup'
, insertNewKey
, insertKeyExists
, deleteKeyExists
, insertModifying
, ptrEq
, adjust#
) where
import Control.Applicative (Const (..))
import Control.DeepSeq (NFData (..), NFData1 (..), NFData2 (..))
import Control.Monad.ST (ST, runST)
import Data.Bifoldable (Bifoldable (..))
import Data.Bits (complement, countTrailingZeros, popCount,
shiftL, unsafeShiftL, unsafeShiftR, (.&.),
(.|.))
import Data.Coerce (coerce)
import Data.Data (Constr, Data (..), DataType)
import Data.Functor.Classes (Eq1 (..), Eq2 (..), Ord1 (..), Ord2 (..),
Read1 (..), Show1 (..), Show2 (..))
import Data.Functor.Identity (Identity (..))
import Data.Hashable (Hashable)
import Data.Hashable.Lifted (Hashable1, Hashable2)
import Data.HashMap.Internal.List (isPermutationBy, unorderedCompare)
import Data.Semigroup (Semigroup (..), stimesIdempotentMonoid)
import GHC.Exts (Int (..), Int#, TYPE, (==#))
import GHC.Stack (HasCallStack)
import Prelude hiding (Foldable(..), filter, lookup, map,
pred)
import Text.Read hiding (step)
import qualified Data.Data as Data
import qualified Data.Foldable as Foldable
import qualified Data.Functor.Classes as FC
import qualified Data.Hashable as H
import qualified Data.Hashable.Lifted as H
import qualified Data.HashMap.Internal.Array as A
import qualified Data.List as List
import qualified GHC.Exts as Exts
import qualified Language.Haskell.TH.Syntax as TH
hash :: H.Hashable a => a -> Hash
hash :: forall a. Hashable a => a -> Bitmap
hash = Int -> Bitmap
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int -> Bitmap) -> (a -> Int) -> a -> Bitmap
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Int
forall a. Hashable a => a -> Int
H.hash
data Leaf k v = L !k v
deriving (Leaf k v -> Leaf k v -> Bool
(Leaf k v -> Leaf k v -> Bool)
-> (Leaf k v -> Leaf k v -> Bool) -> Eq (Leaf k v)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall k v. (Eq k, Eq v) => Leaf k v -> Leaf k v -> Bool
$c== :: forall k v. (Eq k, Eq v) => Leaf k v -> Leaf k v -> Bool
== :: Leaf k v -> Leaf k v -> Bool
$c/= :: forall k v. (Eq k, Eq v) => Leaf k v -> Leaf k v -> Bool
/= :: Leaf k v -> Leaf k v -> Bool
Eq)
instance (NFData k, NFData v) => NFData (Leaf k v) where
rnf :: Leaf k v -> ()
rnf (L k
k v
v) = k -> ()
forall a. NFData a => a -> ()
rnf k
k () -> () -> ()
forall a b. a -> b -> b
`seq` v -> ()
forall a. NFData a => a -> ()
rnf v
v
instance (TH.Lift k, TH.Lift v) => TH.Lift (Leaf k v) where
#if MIN_VERSION_template_haskell(2,16,0)
liftTyped :: forall (m :: * -> *). Quote m => Leaf k v -> Code m (Leaf k v)
liftTyped (L k
k v
v) = [|| k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k (a -> b) -> a -> b
forall a b. (a -> b) -> a -> b
$! v
v ||]
#else
lift (L k v) = [| L k $! v |]
#endif
instance NFData k => NFData1 (Leaf k) where
liftRnf :: forall a. (a -> ()) -> Leaf k a -> ()
liftRnf = (k -> ()) -> (a -> ()) -> Leaf k a -> ()
forall a b. (a -> ()) -> (b -> ()) -> Leaf a b -> ()
forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 k -> ()
forall a. NFData a => a -> ()
rnf
instance NFData2 Leaf where
liftRnf2 :: forall a b. (a -> ()) -> (b -> ()) -> Leaf a b -> ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 (L a
k b
v) = a -> ()
rnf1 a
k () -> () -> ()
forall a b. a -> b -> b
`seq` b -> ()
rnf2 b
v
data HashMap k v
= Empty
| BitmapIndexed !Bitmap !(A.Array (HashMap k v))
| Leaf !Hash !(Leaf k v)
| Full !(A.Array (HashMap k v))
| Collision !Hash !(A.Array (Leaf k v))
type role HashMap nominal representational
deriving instance (TH.Lift k, TH.Lift v) => TH.Lift (HashMap k v)
instance (NFData k, NFData v) => NFData (HashMap k v) where
rnf :: HashMap k v -> ()
rnf HashMap k v
Empty = ()
rnf (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) = Array (HashMap k v) -> ()
forall a. NFData a => a -> ()
rnf Array (HashMap k v)
ary
rnf (Leaf Bitmap
_ Leaf k v
l) = Leaf k v -> ()
forall a. NFData a => a -> ()
rnf Leaf k v
l
rnf (Full Array (HashMap k v)
ary) = Array (HashMap k v) -> ()
forall a. NFData a => a -> ()
rnf Array (HashMap k v)
ary
rnf (Collision Bitmap
_ Array (Leaf k v)
ary) = Array (Leaf k v) -> ()
forall a. NFData a => a -> ()
rnf Array (Leaf k v)
ary
instance NFData k => NFData1 (HashMap k) where
liftRnf :: forall a. (a -> ()) -> HashMap k a -> ()
liftRnf = (k -> ()) -> (a -> ()) -> HashMap k a -> ()
forall a b. (a -> ()) -> (b -> ()) -> HashMap a b -> ()
forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 k -> ()
forall a. NFData a => a -> ()
rnf
instance NFData2 HashMap where
liftRnf2 :: forall a b. (a -> ()) -> (b -> ()) -> HashMap a b -> ()
liftRnf2 a -> ()
_ b -> ()
_ HashMap a b
Empty = ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 (BitmapIndexed Bitmap
_ Array (HashMap a b)
ary) = (HashMap a b -> ()) -> Array (HashMap a b) -> ()
forall a. (a -> ()) -> Array a -> ()
forall (f :: * -> *) a. NFData1 f => (a -> ()) -> f a -> ()
liftRnf ((a -> ()) -> (b -> ()) -> HashMap a b -> ()
forall a b. (a -> ()) -> (b -> ()) -> HashMap a b -> ()
forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2) Array (HashMap a b)
ary
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 (Leaf Bitmap
_ Leaf a b
l) = (a -> ()) -> (b -> ()) -> Leaf a b -> ()
forall a b. (a -> ()) -> (b -> ()) -> Leaf a b -> ()
forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 Leaf a b
l
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 (Full Array (HashMap a b)
ary) = (HashMap a b -> ()) -> Array (HashMap a b) -> ()
forall a. (a -> ()) -> Array a -> ()
forall (f :: * -> *) a. NFData1 f => (a -> ()) -> f a -> ()
liftRnf ((a -> ()) -> (b -> ()) -> HashMap a b -> ()
forall a b. (a -> ()) -> (b -> ()) -> HashMap a b -> ()
forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2) Array (HashMap a b)
ary
liftRnf2 a -> ()
rnf1 b -> ()
rnf2 (Collision Bitmap
_ Array (Leaf a b)
ary) = (Leaf a b -> ()) -> Array (Leaf a b) -> ()
forall a. (a -> ()) -> Array a -> ()
forall (f :: * -> *) a. NFData1 f => (a -> ()) -> f a -> ()
liftRnf ((a -> ()) -> (b -> ()) -> Leaf a b -> ()
forall a b. (a -> ()) -> (b -> ()) -> Leaf a b -> ()
forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 a -> ()
rnf1 b -> ()
rnf2) Array (Leaf a b)
ary
instance Functor (HashMap k) where
fmap :: forall a b. (a -> b) -> HashMap k a -> HashMap k b
fmap = (a -> b) -> HashMap k a -> HashMap k b
forall v1 v2 k. (v1 -> v2) -> HashMap k v1 -> HashMap k v2
map
instance Foldable.Foldable (HashMap k) where
foldMap :: forall m a. Monoid m => (a -> m) -> HashMap k a -> m
foldMap a -> m
f = (k -> a -> m) -> HashMap k a -> m
forall m k v. Monoid m => (k -> v -> m) -> HashMap k v -> m
foldMapWithKey (\ k
_k a
v -> a -> m
f a
v)
{-# INLINE foldMap #-}
foldr :: forall a b. (a -> b -> b) -> b -> HashMap k a -> b
foldr = (a -> b -> b) -> b -> HashMap k a -> b
forall v a k. (v -> a -> a) -> a -> HashMap k v -> a
foldr
{-# INLINE foldr #-}
foldl :: forall b a. (b -> a -> b) -> b -> HashMap k a -> b
foldl = (b -> a -> b) -> b -> HashMap k a -> b
forall a v k. (a -> v -> a) -> a -> HashMap k v -> a
foldl
{-# INLINE foldl #-}
foldr' :: forall a b. (a -> b -> b) -> b -> HashMap k a -> b
foldr' = (a -> b -> b) -> b -> HashMap k a -> b
forall v a k. (v -> a -> a) -> a -> HashMap k v -> a
foldr'
{-# INLINE foldr' #-}
foldl' :: forall b a. (b -> a -> b) -> b -> HashMap k a -> b
foldl' = (b -> a -> b) -> b -> HashMap k a -> b
forall a v k. (a -> v -> a) -> a -> HashMap k v -> a
foldl'
{-# INLINE foldl' #-}
null :: forall a. HashMap k a -> Bool
null = HashMap k a -> Bool
forall k a. HashMap k a -> Bool
null
{-# INLINE null #-}
length :: forall a. HashMap k a -> Int
length = HashMap k a -> Int
forall k a. HashMap k a -> Int
size
{-# INLINE length #-}
instance Bifoldable HashMap where
bifoldMap :: forall m a b. Monoid m => (a -> m) -> (b -> m) -> HashMap a b -> m
bifoldMap a -> m
f b -> m
g = (a -> b -> m) -> HashMap a b -> m
forall m k v. Monoid m => (k -> v -> m) -> HashMap k v -> m
foldMapWithKey (\ a
k b
v -> a -> m
f a
k m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` b -> m
g b
v)
{-# INLINE bifoldMap #-}
bifoldr :: forall a c b.
(a -> c -> c) -> (b -> c -> c) -> c -> HashMap a b -> c
bifoldr a -> c -> c
f b -> c -> c
g = (a -> b -> c -> c) -> c -> HashMap a b -> c
forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey (\ a
k b
v c
acc -> a
k a -> c -> c
`f` (b
v b -> c -> c
`g` c
acc))
{-# INLINE bifoldr #-}
bifoldl :: forall c a b.
(c -> a -> c) -> (c -> b -> c) -> c -> HashMap a b -> c
bifoldl c -> a -> c
f c -> b -> c
g = (c -> a -> b -> c) -> c -> HashMap a b -> c
forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey (\ c
acc a
k b
v -> (c
acc c -> a -> c
`f` a
k) c -> b -> c
`g` b
v)
{-# INLINE bifoldl #-}
instance (Eq k, Hashable k) => Semigroup (HashMap k v) where
<> :: HashMap k v -> HashMap k v -> HashMap k v
(<>) = HashMap k v -> HashMap k v -> HashMap k v
forall k v. Eq k => HashMap k v -> HashMap k v -> HashMap k v
union
{-# INLINE (<>) #-}
stimes :: forall b. Integral b => b -> HashMap k v -> HashMap k v
stimes = b -> HashMap k v -> HashMap k v
forall b a. (Integral b, Monoid a) => b -> a -> a
stimesIdempotentMonoid
{-# INLINE stimes #-}
instance (Eq k, Hashable k) => Monoid (HashMap k v) where
mempty :: HashMap k v
mempty = HashMap k v
forall k v. HashMap k v
empty
{-# INLINE mempty #-}
mappend :: HashMap k v -> HashMap k v -> HashMap k v
mappend = HashMap k v -> HashMap k v -> HashMap k v
forall a. Semigroup a => a -> a -> a
(<>)
{-# INLINE mappend #-}
instance (Data k, Data v, Eq k, Hashable k) => Data (HashMap k v) where
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HashMap k v -> c (HashMap k v)
gfoldl forall d b. Data d => c (d -> b) -> d -> c b
f forall g. g -> c g
z HashMap k v
m = ([(k, v)] -> HashMap k v) -> c ([(k, v)] -> HashMap k v)
forall g. g -> c g
z [(k, v)] -> HashMap k v
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList c ([(k, v)] -> HashMap k v) -> [(k, v)] -> c (HashMap k v)
forall d b. Data d => c (d -> b) -> d -> c b
`f` HashMap k v -> [(k, v)]
forall k v. HashMap k v -> [(k, v)]
toList HashMap k v
m
toConstr :: HashMap k v -> Constr
toConstr HashMap k v
_ = Constr
fromListConstr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (HashMap k v)
gunfold forall b r. Data b => c (b -> r) -> c r
k forall r. r -> c r
z Constr
c = case Constr -> Int
Data.constrIndex Constr
c of
Int
1 -> c ([(k, v)] -> HashMap k v) -> c (HashMap k v)
forall b r. Data b => c (b -> r) -> c r
k (([(k, v)] -> HashMap k v) -> c ([(k, v)] -> HashMap k v)
forall r. r -> c r
z [(k, v)] -> HashMap k v
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList)
Int
_ -> [Char] -> c (HashMap k v)
forall a. HasCallStack => [Char] -> a
error [Char]
"gunfold"
dataTypeOf :: HashMap k v -> DataType
dataTypeOf HashMap k v
_ = DataType
hashMapDataType
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (HashMap k v))
dataCast1 forall d. Data d => c (t d)
f = c (t v) -> Maybe (c (HashMap k v))
forall {k1} {k2} (c :: k1 -> *) (t :: k2 -> k1) (t' :: k2 -> k1)
(a :: k2).
(Typeable t, Typeable t') =>
c (t a) -> Maybe (c (t' a))
Data.gcast1 c (t v)
forall d. Data d => c (t d)
f
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (HashMap k v))
dataCast2 forall d e. (Data d, Data e) => c (t d e)
f = c (t k v) -> Maybe (c (HashMap k v))
forall {k1} {k2} {k3} (c :: k1 -> *) (t :: k2 -> k3 -> k1)
(t' :: k2 -> k3 -> k1) (a :: k2) (b :: k3).
(Typeable t, Typeable t') =>
c (t a b) -> Maybe (c (t' a b))
Data.gcast2 c (t k v)
forall d e. (Data d, Data e) => c (t d e)
f
fromListConstr :: Constr
fromListConstr :: Constr
fromListConstr = DataType -> [Char] -> [[Char]] -> Fixity -> Constr
Data.mkConstr DataType
hashMapDataType [Char]
"fromList" [] Fixity
Data.Prefix
hashMapDataType :: DataType
hashMapDataType :: DataType
hashMapDataType = [Char] -> [Constr] -> DataType
Data.mkDataType [Char]
"Data.HashMap.Internal.HashMap" [Constr
fromListConstr]
type Hash = Word
type Bitmap = Word
type Shift = Int
instance Show2 HashMap where
liftShowsPrec2 :: forall a b.
(Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> Int
-> HashMap a b
-> ShowS
liftShowsPrec2 Int -> a -> ShowS
spk [a] -> ShowS
slk Int -> b -> ShowS
spv [b] -> ShowS
slv Int
d HashMap a b
m =
(Int -> [(a, b)] -> ShowS) -> [Char] -> Int -> [(a, b)] -> ShowS
forall a. (Int -> a -> ShowS) -> [Char] -> Int -> a -> ShowS
FC.showsUnaryWith ((Int -> (a, b) -> ShowS)
-> ([(a, b)] -> ShowS) -> Int -> [(a, b)] -> ShowS
forall a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> [a] -> ShowS
forall (f :: * -> *) a.
Show1 f =>
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS
liftShowsPrec Int -> (a, b) -> ShowS
sp [(a, b)] -> ShowS
sl) [Char]
"fromList" Int
d (HashMap a b -> [(a, b)]
forall k v. HashMap k v -> [(k, v)]
toList HashMap a b
m)
where
sp :: Int -> (a, b) -> ShowS
sp = (Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> Int
-> (a, b)
-> ShowS
forall a b.
(Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> Int
-> (a, b)
-> ShowS
forall (f :: * -> * -> *) a b.
Show2 f =>
(Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> Int
-> f a b
-> ShowS
liftShowsPrec2 Int -> a -> ShowS
spk [a] -> ShowS
slk Int -> b -> ShowS
spv [b] -> ShowS
slv
sl :: [(a, b)] -> ShowS
sl = (Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> [(a, b)]
-> ShowS
forall a b.
(Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> [(a, b)]
-> ShowS
forall (f :: * -> * -> *) a b.
Show2 f =>
(Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> [f a b]
-> ShowS
liftShowList2 Int -> a -> ShowS
spk [a] -> ShowS
slk Int -> b -> ShowS
spv [b] -> ShowS
slv
instance Show k => Show1 (HashMap k) where
liftShowsPrec :: forall a.
(Int -> a -> ShowS)
-> ([a] -> ShowS) -> Int -> HashMap k a -> ShowS
liftShowsPrec = (Int -> k -> ShowS)
-> ([k] -> ShowS)
-> (Int -> a -> ShowS)
-> ([a] -> ShowS)
-> Int
-> HashMap k a
-> ShowS
forall a b.
(Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> Int
-> HashMap a b
-> ShowS
forall (f :: * -> * -> *) a b.
Show2 f =>
(Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> Int
-> f a b
-> ShowS
liftShowsPrec2 Int -> k -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec [k] -> ShowS
forall a. Show a => [a] -> ShowS
showList
instance (Eq k, Hashable k, Read k) => Read1 (HashMap k) where
liftReadsPrec :: forall a.
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (HashMap k a)
liftReadsPrec Int -> ReadS a
rp ReadS [a]
rl = ([Char] -> ReadS (HashMap k a)) -> Int -> ReadS (HashMap k a)
forall a. ([Char] -> ReadS a) -> Int -> ReadS a
FC.readsData (([Char] -> ReadS (HashMap k a)) -> Int -> ReadS (HashMap k a))
-> ([Char] -> ReadS (HashMap k a)) -> Int -> ReadS (HashMap k a)
forall a b. (a -> b) -> a -> b
$
(Int -> ReadS [(k, a)])
-> [Char]
-> ([(k, a)] -> HashMap k a)
-> [Char]
-> ReadS (HashMap k a)
forall a t.
(Int -> ReadS a) -> [Char] -> (a -> t) -> [Char] -> ReadS t
FC.readsUnaryWith ((Int -> ReadS (k, a)) -> ReadS [(k, a)] -> Int -> ReadS [(k, a)]
forall a. (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS [a]
forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
liftReadsPrec Int -> ReadS (k, a)
rp' ReadS [(k, a)]
rl') [Char]
"fromList" [(k, a)] -> HashMap k a
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList
where
rp' :: Int -> ReadS (k, a)
rp' = (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (k, a)
forall a. (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (k, a)
forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
liftReadsPrec Int -> ReadS a
rp ReadS [a]
rl
rl' :: ReadS [(k, a)]
rl' = (Int -> ReadS a) -> ReadS [a] -> ReadS [(k, a)]
forall a. (Int -> ReadS a) -> ReadS [a] -> ReadS [(k, a)]
forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> ReadS [f a]
liftReadList Int -> ReadS a
rp ReadS [a]
rl
instance (Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) where
readPrec :: ReadPrec (HashMap k e)
readPrec = ReadPrec (HashMap k e) -> ReadPrec (HashMap k e)
forall a. ReadPrec a -> ReadPrec a
parens (ReadPrec (HashMap k e) -> ReadPrec (HashMap k e))
-> ReadPrec (HashMap k e) -> ReadPrec (HashMap k e)
forall a b. (a -> b) -> a -> b
$ Int -> ReadPrec (HashMap k e) -> ReadPrec (HashMap k e)
forall a. Int -> ReadPrec a -> ReadPrec a
prec Int
10 (ReadPrec (HashMap k e) -> ReadPrec (HashMap k e))
-> ReadPrec (HashMap k e) -> ReadPrec (HashMap k e)
forall a b. (a -> b) -> a -> b
$ do
Ident [Char]
"fromList" <- ReadPrec Lexeme
lexP
[(k, e)] -> HashMap k e
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList ([(k, e)] -> HashMap k e)
-> ReadPrec [(k, e)] -> ReadPrec (HashMap k e)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ReadPrec [(k, e)]
forall a. Read a => ReadPrec a
readPrec
readListPrec :: ReadPrec [HashMap k e]
readListPrec = ReadPrec [HashMap k e]
forall a. Read a => ReadPrec [a]
readListPrecDefault
instance (Show k, Show v) => Show (HashMap k v) where
showsPrec :: Int -> HashMap k v -> ShowS
showsPrec Int
d HashMap k v
m = Bool -> ShowS -> ShowS
showParen (Int
d Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
10) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$
[Char] -> ShowS
showString [Char]
"fromList " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [(k, v)] -> ShowS
forall a. Show a => a -> ShowS
shows (HashMap k v -> [(k, v)]
forall k v. HashMap k v -> [(k, v)]
toList HashMap k v
m)
instance Traversable (HashMap k) where
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> HashMap k a -> f (HashMap k b)
traverse a -> f b
f = (k -> a -> f b) -> HashMap k a -> f (HashMap k b)
forall (f :: * -> *) k v1 v2.
Applicative f =>
(k -> v1 -> f v2) -> HashMap k v1 -> f (HashMap k v2)
traverseWithKey ((a -> f b) -> k -> a -> f b
forall a b. a -> b -> a
const a -> f b
f)
{-# INLINABLE traverse #-}
instance Eq2 HashMap where
liftEq2 :: forall a b c d.
(a -> b -> Bool)
-> (c -> d -> Bool) -> HashMap a c -> HashMap b d -> Bool
liftEq2 = (a -> b -> Bool)
-> (c -> d -> Bool) -> HashMap a c -> HashMap b d -> Bool
forall a b c d.
(a -> b -> Bool)
-> (c -> d -> Bool) -> HashMap a c -> HashMap b d -> Bool
equal2
instance Eq k => Eq1 (HashMap k) where
liftEq :: forall a b. (a -> b -> Bool) -> HashMap k a -> HashMap k b -> Bool
liftEq = (a -> b -> Bool) -> HashMap k a -> HashMap k b -> Bool
forall k v v'.
Eq k =>
(v -> v' -> Bool) -> HashMap k v -> HashMap k v' -> Bool
equal1
instance (Eq k, Eq v) => Eq (HashMap k v) where
== :: HashMap k v -> HashMap k v -> Bool
(==) = (v -> v -> Bool) -> HashMap k v -> HashMap k v -> Bool
forall k v v'.
Eq k =>
(v -> v' -> Bool) -> HashMap k v -> HashMap k v' -> Bool
equal1 v -> v -> Bool
forall a. Eq a => a -> a -> Bool
(==)
equal1 :: Eq k
=> (v -> v' -> Bool)
-> HashMap k v -> HashMap k v' -> Bool
equal1 :: forall k v v'.
Eq k =>
(v -> v' -> Bool) -> HashMap k v -> HashMap k v' -> Bool
equal1 v -> v' -> Bool
eq = HashMap k v -> HashMap k v' -> Bool
go
where
go :: HashMap k v -> HashMap k v' -> Bool
go HashMap k v
Empty HashMap k v'
Empty = Bool
True
go (BitmapIndexed Bitmap
bm1 Array (HashMap k v)
ary1) (BitmapIndexed Bitmap
bm2 Array (HashMap k v')
ary2)
= Bitmap
bm1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
bm2 Bool -> Bool -> Bool
&& (HashMap k v -> HashMap k v' -> Bool)
-> Array (HashMap k v) -> Array (HashMap k v') -> Bool
forall a b. (a -> b -> Bool) -> Array a -> Array b -> Bool
A.sameArray1 HashMap k v -> HashMap k v' -> Bool
go Array (HashMap k v)
ary1 Array (HashMap k v')
ary2
go (Leaf Bitmap
h1 Leaf k v
l1) (Leaf Bitmap
h2 Leaf k v'
l2) = Bitmap
h1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h2 Bool -> Bool -> Bool
&& Leaf k v -> Leaf k v' -> Bool
leafEq Leaf k v
l1 Leaf k v'
l2
go (Full Array (HashMap k v)
ary1) (Full Array (HashMap k v')
ary2) = (HashMap k v -> HashMap k v' -> Bool)
-> Array (HashMap k v) -> Array (HashMap k v') -> Bool
forall a b. (a -> b -> Bool) -> Array a -> Array b -> Bool
A.sameArray1 HashMap k v -> HashMap k v' -> Bool
go Array (HashMap k v)
ary1 Array (HashMap k v')
ary2
go (Collision Bitmap
h1 Array (Leaf k v)
ary1) (Collision Bitmap
h2 Array (Leaf k v')
ary2)
= Bitmap
h1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h2 Bool -> Bool -> Bool
&& (Leaf k v -> Leaf k v' -> Bool)
-> [Leaf k v] -> [Leaf k v'] -> Bool
forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
isPermutationBy Leaf k v -> Leaf k v' -> Bool
leafEq (Array (Leaf k v) -> [Leaf k v]
forall a. Array a -> [a]
A.toList Array (Leaf k v)
ary1) (Array (Leaf k v') -> [Leaf k v']
forall a. Array a -> [a]
A.toList Array (Leaf k v')
ary2)
go HashMap k v
_ HashMap k v'
_ = Bool
False
leafEq :: Leaf k v -> Leaf k v' -> Bool
leafEq (L k
k1 v
v1) (L k
k2 v'
v2) = k
k1 k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
k2 Bool -> Bool -> Bool
&& v -> v' -> Bool
eq v
v1 v'
v2
equal2 :: (k -> k' -> Bool) -> (v -> v' -> Bool)
-> HashMap k v -> HashMap k' v' -> Bool
equal2 :: forall a b c d.
(a -> b -> Bool)
-> (c -> d -> Bool) -> HashMap a c -> HashMap b d -> Bool
equal2 k -> k' -> Bool
eqk v -> v' -> Bool
eqv HashMap k v
t1 HashMap k' v'
t2 = [HashMap k v] -> [HashMap k' v'] -> Bool
go (HashMap k v -> [HashMap k v] -> [HashMap k v]
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k v
t1 []) (HashMap k' v' -> [HashMap k' v'] -> [HashMap k' v']
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k' v'
t2 [])
where
go :: [HashMap k v] -> [HashMap k' v'] -> Bool
go (Leaf Bitmap
k1 Leaf k v
l1 : [HashMap k v]
tl1) (Leaf Bitmap
k2 Leaf k' v'
l2 : [HashMap k' v']
tl2)
| Bitmap
k1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
k2 Bool -> Bool -> Bool
&&
Leaf k v -> Leaf k' v' -> Bool
leafEq Leaf k v
l1 Leaf k' v'
l2
= [HashMap k v] -> [HashMap k' v'] -> Bool
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go (Collision Bitmap
h1 Array (Leaf k v)
ary1 : [HashMap k v]
tl1) (Collision Bitmap
h2 Array (Leaf k' v')
ary2 : [HashMap k' v']
tl2)
| Bitmap
h1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h2 Bool -> Bool -> Bool
&&
Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Array (Leaf k' v') -> Int
forall a. Array a -> Int
A.length Array (Leaf k' v')
ary2 Bool -> Bool -> Bool
&&
(Leaf k v -> Leaf k' v' -> Bool)
-> [Leaf k v] -> [Leaf k' v'] -> Bool
forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
isPermutationBy Leaf k v -> Leaf k' v' -> Bool
leafEq (Array (Leaf k v) -> [Leaf k v]
forall a. Array a -> [a]
A.toList Array (Leaf k v)
ary1) (Array (Leaf k' v') -> [Leaf k' v']
forall a. Array a -> [a]
A.toList Array (Leaf k' v')
ary2)
= [HashMap k v] -> [HashMap k' v'] -> Bool
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go [] [] = Bool
True
go [HashMap k v]
_ [HashMap k' v']
_ = Bool
False
leafEq :: Leaf k v -> Leaf k' v' -> Bool
leafEq (L k
k v
v) (L k'
k' v'
v') = k -> k' -> Bool
eqk k
k k'
k' Bool -> Bool -> Bool
&& v -> v' -> Bool
eqv v
v v'
v'
instance Ord2 HashMap where
liftCompare2 :: forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
liftCompare2 = (a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
cmp
instance Ord k => Ord1 (HashMap k) where
liftCompare :: forall a b.
(a -> b -> Ordering) -> HashMap k a -> HashMap k b -> Ordering
liftCompare = (k -> k -> Ordering)
-> (a -> b -> Ordering) -> HashMap k a -> HashMap k b -> Ordering
forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
cmp k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare
instance (Ord k, Ord v) => Ord (HashMap k v) where
compare :: HashMap k v -> HashMap k v -> Ordering
compare = (k -> k -> Ordering)
-> (v -> v -> Ordering) -> HashMap k v -> HashMap k v -> Ordering
forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
cmp k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare v -> v -> Ordering
forall a. Ord a => a -> a -> Ordering
compare
cmp :: (k -> k' -> Ordering) -> (v -> v' -> Ordering)
-> HashMap k v -> HashMap k' v' -> Ordering
cmp :: forall a b c d.
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> HashMap a c -> HashMap b d -> Ordering
cmp k -> k' -> Ordering
cmpk v -> v' -> Ordering
cmpv HashMap k v
t1 HashMap k' v'
t2 = [HashMap k v] -> [HashMap k' v'] -> Ordering
go (HashMap k v -> [HashMap k v] -> [HashMap k v]
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k v
t1 []) (HashMap k' v' -> [HashMap k' v'] -> [HashMap k' v']
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k' v'
t2 [])
where
go :: [HashMap k v] -> [HashMap k' v'] -> Ordering
go (Leaf Bitmap
k1 Leaf k v
l1 : [HashMap k v]
tl1) (Leaf Bitmap
k2 Leaf k' v'
l2 : [HashMap k' v']
tl2)
= Bitmap -> Bitmap -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Bitmap
k1 Bitmap
k2 Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend`
Leaf k v -> Leaf k' v' -> Ordering
leafCompare Leaf k v
l1 Leaf k' v'
l2 Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend`
[HashMap k v] -> [HashMap k' v'] -> Ordering
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go (Collision Bitmap
h1 Array (Leaf k v)
ary1 : [HashMap k v]
tl1) (Collision Bitmap
h2 Array (Leaf k' v')
ary2 : [HashMap k' v']
tl2)
= Bitmap -> Bitmap -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Bitmap
h1 Bitmap
h2 Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend`
Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary1) (Array (Leaf k' v') -> Int
forall a. Array a -> Int
A.length Array (Leaf k' v')
ary2) Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend`
(Leaf k v -> Leaf k' v' -> Ordering)
-> [Leaf k v] -> [Leaf k' v'] -> Ordering
forall a b. (a -> b -> Ordering) -> [a] -> [b] -> Ordering
unorderedCompare Leaf k v -> Leaf k' v' -> Ordering
leafCompare (Array (Leaf k v) -> [Leaf k v]
forall a. Array a -> [a]
A.toList Array (Leaf k v)
ary1) (Array (Leaf k' v') -> [Leaf k' v']
forall a. Array a -> [a]
A.toList Array (Leaf k' v')
ary2) Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend`
[HashMap k v] -> [HashMap k' v'] -> Ordering
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go (Leaf Bitmap
_ Leaf k v
_ : [HashMap k v]
_) (Collision Bitmap
_ Array (Leaf k' v')
_ : [HashMap k' v']
_) = Ordering
LT
go (Collision Bitmap
_ Array (Leaf k v)
_ : [HashMap k v]
_) (Leaf Bitmap
_ Leaf k' v'
_ : [HashMap k' v']
_) = Ordering
GT
go [] [] = Ordering
EQ
go [] [HashMap k' v']
_ = Ordering
LT
go [HashMap k v]
_ [] = Ordering
GT
go [HashMap k v]
_ [HashMap k' v']
_ = [Char] -> Ordering
forall a. HasCallStack => [Char] -> a
error [Char]
"cmp: Should never happen, leavesAndCollisions includes non Leaf / Collision"
leafCompare :: Leaf k v -> Leaf k' v' -> Ordering
leafCompare (L k
k v
v) (L k'
k' v'
v') = k -> k' -> Ordering
cmpk k
k k'
k' Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend` v -> v' -> Ordering
cmpv v
v v'
v'
equalKeys1 :: (k -> k' -> Bool) -> HashMap k v -> HashMap k' v' -> Bool
equalKeys1 :: forall k k' v v'.
(k -> k' -> Bool) -> HashMap k v -> HashMap k' v' -> Bool
equalKeys1 k -> k' -> Bool
eq HashMap k v
t1 HashMap k' v'
t2 = [HashMap k v] -> [HashMap k' v'] -> Bool
go (HashMap k v -> [HashMap k v] -> [HashMap k v]
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k v
t1 []) (HashMap k' v' -> [HashMap k' v'] -> [HashMap k' v']
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap k' v'
t2 [])
where
go :: [HashMap k v] -> [HashMap k' v'] -> Bool
go (Leaf Bitmap
k1 Leaf k v
l1 : [HashMap k v]
tl1) (Leaf Bitmap
k2 Leaf k' v'
l2 : [HashMap k' v']
tl2)
| Bitmap
k1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
k2 Bool -> Bool -> Bool
&& Leaf k v -> Leaf k' v' -> Bool
leafEq Leaf k v
l1 Leaf k' v'
l2
= [HashMap k v] -> [HashMap k' v'] -> Bool
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go (Collision Bitmap
h1 Array (Leaf k v)
ary1 : [HashMap k v]
tl1) (Collision Bitmap
h2 Array (Leaf k' v')
ary2 : [HashMap k' v']
tl2)
| Bitmap
h1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h2 Bool -> Bool -> Bool
&& Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Array (Leaf k' v') -> Int
forall a. Array a -> Int
A.length Array (Leaf k' v')
ary2 Bool -> Bool -> Bool
&&
(Leaf k v -> Leaf k' v' -> Bool)
-> [Leaf k v] -> [Leaf k' v'] -> Bool
forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
isPermutationBy Leaf k v -> Leaf k' v' -> Bool
leafEq (Array (Leaf k v) -> [Leaf k v]
forall a. Array a -> [a]
A.toList Array (Leaf k v)
ary1) (Array (Leaf k' v') -> [Leaf k' v']
forall a. Array a -> [a]
A.toList Array (Leaf k' v')
ary2)
= [HashMap k v] -> [HashMap k' v'] -> Bool
go [HashMap k v]
tl1 [HashMap k' v']
tl2
go [] [] = Bool
True
go [HashMap k v]
_ [HashMap k' v']
_ = Bool
False
leafEq :: Leaf k v -> Leaf k' v' -> Bool
leafEq (L k
k v
_) (L k'
k' v'
_) = k -> k' -> Bool
eq k
k k'
k'
equalKeys :: Eq k => HashMap k v -> HashMap k v' -> Bool
equalKeys :: forall k v v'. Eq k => HashMap k v -> HashMap k v' -> Bool
equalKeys = HashMap k v -> HashMap k v' -> Bool
forall k v v'. Eq k => HashMap k v -> HashMap k v' -> Bool
go
where
go :: Eq k => HashMap k v -> HashMap k v' -> Bool
go :: forall k v v'. Eq k => HashMap k v -> HashMap k v' -> Bool
go HashMap k v
Empty HashMap k v'
Empty = Bool
True
go (BitmapIndexed Bitmap
bm1 Array (HashMap k v)
ary1) (BitmapIndexed Bitmap
bm2 Array (HashMap k v')
ary2)
= Bitmap
bm1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
bm2 Bool -> Bool -> Bool
&& (HashMap k v -> HashMap k v' -> Bool)
-> Array (HashMap k v) -> Array (HashMap k v') -> Bool
forall a b. (a -> b -> Bool) -> Array a -> Array b -> Bool
A.sameArray1 HashMap k v -> HashMap k v' -> Bool
forall k v v'. Eq k => HashMap k v -> HashMap k v' -> Bool
go Array (HashMap k v)
ary1 Array (HashMap k v')
ary2
go (Leaf Bitmap
h1 Leaf k v
l1) (Leaf Bitmap
h2 Leaf k v'
l2) = Bitmap
h1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h2 Bool -> Bool -> Bool
&& Leaf k v -> Leaf k v' -> Bool
forall {a} {v} {v}. Eq a => Leaf a v -> Leaf a v -> Bool
leafEq Leaf k v
l1 Leaf k v'
l2
go (Full Array (HashMap k v)
ary1) (Full Array (HashMap k v')
ary2) = (HashMap k v -> HashMap k v' -> Bool)
-> Array (HashMap k v) -> Array (HashMap k v') -> Bool
forall a b. (a -> b -> Bool) -> Array a -> Array b -> Bool
A.sameArray1 HashMap k v -> HashMap k v' -> Bool
forall k v v'. Eq k => HashMap k v -> HashMap k v' -> Bool
go Array (HashMap k v)
ary1 Array (HashMap k v')
ary2
go (Collision Bitmap
h1 Array (Leaf k v)
ary1) (Collision Bitmap
h2 Array (Leaf k v')
ary2)
= Bitmap
h1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h2 Bool -> Bool -> Bool
&& (Leaf k v -> Leaf k v' -> Bool)
-> [Leaf k v] -> [Leaf k v'] -> Bool
forall a b. (a -> b -> Bool) -> [a] -> [b] -> Bool
isPermutationBy Leaf k v -> Leaf k v' -> Bool
forall {a} {v} {v}. Eq a => Leaf a v -> Leaf a v -> Bool
leafEq (Array (Leaf k v) -> [Leaf k v]
forall a. Array a -> [a]
A.toList Array (Leaf k v)
ary1) (Array (Leaf k v') -> [Leaf k v']
forall a. Array a -> [a]
A.toList Array (Leaf k v')
ary2)
go HashMap k v
_ HashMap k v'
_ = Bool
False
leafEq :: Leaf a v -> Leaf a v -> Bool
leafEq (L a
k1 v
_) (L a
k2 v
_) = a
k1 a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
k2
instance Hashable2 HashMap where
liftHashWithSalt2 :: forall a b.
(Int -> a -> Int) -> (Int -> b -> Int) -> Int -> HashMap a b -> Int
liftHashWithSalt2 Int -> a -> Int
hk Int -> b -> Int
hv Int
salt HashMap a b
hm = Int -> [HashMap a b] -> Int
go Int
salt (HashMap a b -> [HashMap a b] -> [HashMap a b]
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions HashMap a b
hm [])
where
go :: Int -> [HashMap a b] -> Int
go Int
s [] = Int
s
go Int
s (Leaf Bitmap
_ Leaf a b
l : [HashMap a b]
tl)
= Int
s Int -> Leaf a b -> Int
`hashLeafWithSalt` Leaf a b
l Int -> [HashMap a b] -> Int
`go` [HashMap a b]
tl
go Int
s (Collision Bitmap
h Array (Leaf a b)
a : [HashMap a b]
tl)
= (Int
s Int -> Bitmap -> Int
forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` Bitmap
h) Int -> Array (Leaf a b) -> Int
`hashCollisionWithSalt` Array (Leaf a b)
a Int -> [HashMap a b] -> Int
`go` [HashMap a b]
tl
go Int
s (HashMap a b
_ : [HashMap a b]
tl) = Int
s Int -> [HashMap a b] -> Int
`go` [HashMap a b]
tl
hashLeafWithSalt :: Int -> Leaf a b -> Int
hashLeafWithSalt Int
s (L a
k b
v) = (Int
s Int -> a -> Int
`hk` a
k) Int -> b -> Int
`hv` b
v
hashCollisionWithSalt :: Int -> Array (Leaf a b) -> Int
hashCollisionWithSalt Int
s
= (Int -> Int -> Int) -> Int -> [Int] -> Int
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' Int -> Int -> Int
forall a. Hashable a => Int -> a -> Int
H.hashWithSalt Int
s ([Int] -> Int)
-> (Array (Leaf a b) -> [Int]) -> Array (Leaf a b) -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Array (Leaf a b) -> [Int]
arrayHashesSorted Int
s
arrayHashesSorted :: Int -> Array (Leaf a b) -> [Int]
arrayHashesSorted Int
s = [Int] -> [Int]
forall a. Ord a => [a] -> [a]
List.sort ([Int] -> [Int])
-> (Array (Leaf a b) -> [Int]) -> Array (Leaf a b) -> [Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Leaf a b -> Int) -> [Leaf a b] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
List.map (Int -> Leaf a b -> Int
hashLeafWithSalt Int
s) ([Leaf a b] -> [Int])
-> (Array (Leaf a b) -> [Leaf a b]) -> Array (Leaf a b) -> [Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array (Leaf a b) -> [Leaf a b]
forall a. Array a -> [a]
A.toList
instance (Hashable k) => Hashable1 (HashMap k) where
liftHashWithSalt :: forall a. (Int -> a -> Int) -> Int -> HashMap k a -> Int
liftHashWithSalt = (Int -> k -> Int) -> (Int -> a -> Int) -> Int -> HashMap k a -> Int
forall a b.
(Int -> a -> Int) -> (Int -> b -> Int) -> Int -> HashMap a b -> Int
forall (t :: * -> * -> *) a b.
Hashable2 t =>
(Int -> a -> Int) -> (Int -> b -> Int) -> Int -> t a b -> Int
H.liftHashWithSalt2 Int -> k -> Int
forall a. Hashable a => Int -> a -> Int
H.hashWithSalt
instance (Hashable k, Hashable v) => Hashable (HashMap k v) where
hashWithSalt :: Int -> HashMap k v -> Int
hashWithSalt Int
salt HashMap k v
hm = Int -> HashMap k v -> Int
go Int
salt HashMap k v
hm
where
go :: Int -> HashMap k v -> Int
go :: Int -> HashMap k v -> Int
go Int
s HashMap k v
Empty = Int
s
go Int
s (BitmapIndexed Bitmap
_ Array (HashMap k v)
a) = (Int -> HashMap k v -> Int) -> Int -> Array (HashMap k v) -> Int
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' Int -> HashMap k v -> Int
go Int
s Array (HashMap k v)
a
go Int
s (Leaf Bitmap
h (L k
_ v
v))
= Int
s Int -> Bitmap -> Int
forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` Bitmap
h Int -> v -> Int
forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` v
v
go Int
s (Full Array (HashMap k v)
a) = (Int -> HashMap k v -> Int) -> Int -> Array (HashMap k v) -> Int
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' Int -> HashMap k v -> Int
go Int
s Array (HashMap k v)
a
go Int
s (Collision Bitmap
h Array (Leaf k v)
a)
= (Int
s Int -> Bitmap -> Int
forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` Bitmap
h) Int -> Array (Leaf k v) -> Int
`hashCollisionWithSalt` Array (Leaf k v)
a
hashLeafWithSalt :: Int -> Leaf k v -> Int
hashLeafWithSalt :: Int -> Leaf k v -> Int
hashLeafWithSalt Int
s (L k
k v
v) = Int
s Int -> k -> Int
forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` k
k Int -> v -> Int
forall a. Hashable a => Int -> a -> Int
`H.hashWithSalt` v
v
hashCollisionWithSalt :: Int -> A.Array (Leaf k v) -> Int
hashCollisionWithSalt :: Int -> Array (Leaf k v) -> Int
hashCollisionWithSalt Int
s
= (Int -> Int -> Int) -> Int -> [Int] -> Int
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' Int -> Int -> Int
forall a. Hashable a => Int -> a -> Int
H.hashWithSalt Int
s ([Int] -> Int)
-> (Array (Leaf k v) -> [Int]) -> Array (Leaf k v) -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Array (Leaf k v) -> [Int]
arrayHashesSorted Int
s
arrayHashesSorted :: Int -> A.Array (Leaf k v) -> [Int]
arrayHashesSorted :: Int -> Array (Leaf k v) -> [Int]
arrayHashesSorted Int
s = [Int] -> [Int]
forall a. Ord a => [a] -> [a]
List.sort ([Int] -> [Int])
-> (Array (Leaf k v) -> [Int]) -> Array (Leaf k v) -> [Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Leaf k v -> Int) -> [Leaf k v] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
List.map (Int -> Leaf k v -> Int
hashLeafWithSalt Int
s) ([Leaf k v] -> [Int])
-> (Array (Leaf k v) -> [Leaf k v]) -> Array (Leaf k v) -> [Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Array (Leaf k v) -> [Leaf k v]
forall a. Array a -> [a]
A.toList
leavesAndCollisions :: HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions :: forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) [HashMap k v]
a = (HashMap k v -> [HashMap k v] -> [HashMap k v])
-> [HashMap k v] -> Array (HashMap k v) -> [HashMap k v]
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr HashMap k v -> [HashMap k v] -> [HashMap k v]
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions [HashMap k v]
a Array (HashMap k v)
ary
leavesAndCollisions (Full Array (HashMap k v)
ary) [HashMap k v]
a = (HashMap k v -> [HashMap k v] -> [HashMap k v])
-> [HashMap k v] -> Array (HashMap k v) -> [HashMap k v]
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr HashMap k v -> [HashMap k v] -> [HashMap k v]
forall k v. HashMap k v -> [HashMap k v] -> [HashMap k v]
leavesAndCollisions [HashMap k v]
a Array (HashMap k v)
ary
leavesAndCollisions l :: HashMap k v
l@(Leaf Bitmap
_ Leaf k v
_) [HashMap k v]
a = HashMap k v
l HashMap k v -> [HashMap k v] -> [HashMap k v]
forall a. a -> [a] -> [a]
: [HashMap k v]
a
leavesAndCollisions c :: HashMap k v
c@(Collision Bitmap
_ Array (Leaf k v)
_) [HashMap k v]
a = HashMap k v
c HashMap k v -> [HashMap k v] -> [HashMap k v]
forall a. a -> [a] -> [a]
: [HashMap k v]
a
leavesAndCollisions HashMap k v
Empty [HashMap k v]
a = [HashMap k v]
a
isLeafOrCollision :: HashMap k v -> Bool
isLeafOrCollision :: forall k a. HashMap k a -> Bool
isLeafOrCollision (Leaf Bitmap
_ Leaf k v
_) = Bool
True
isLeafOrCollision (Collision Bitmap
_ Array (Leaf k v)
_) = Bool
True
isLeafOrCollision HashMap k v
_ = Bool
False
empty :: HashMap k v
empty :: forall k v. HashMap k v
empty = HashMap k v
forall k v. HashMap k v
Empty
singleton :: (Hashable k) => k -> v -> HashMap k v
singleton :: forall k v. Hashable k => k -> v -> HashMap k v
singleton k
k v
v = Bitmap -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf (k -> Bitmap
forall a. Hashable a => a -> Bitmap
hash k
k) (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
v)
null :: HashMap k v -> Bool
null :: forall k a. HashMap k a -> Bool
null HashMap k v
Empty = Bool
True
null HashMap k v
_ = Bool
False
size :: HashMap k v -> Int
size :: forall k a. HashMap k a -> Int
size HashMap k v
t = HashMap k v -> Int -> Int
forall {k} {v}. HashMap k v -> Int -> Int
go HashMap k v
t Int
0
where
go :: HashMap k v -> Int -> Int
go HashMap k v
Empty !Int
n = Int
n
go (Leaf Bitmap
_ Leaf k v
_) Int
n = Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1
go (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) Int
n = (Int -> HashMap k v -> Int) -> Int -> Array (HashMap k v) -> Int
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' ((HashMap k v -> Int -> Int) -> Int -> HashMap k v -> Int
forall a b c. (a -> b -> c) -> b -> a -> c
flip HashMap k v -> Int -> Int
go) Int
n Array (HashMap k v)
ary
go (Full Array (HashMap k v)
ary) Int
n = (Int -> HashMap k v -> Int) -> Int -> Array (HashMap k v) -> Int
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' ((HashMap k v -> Int -> Int) -> Int -> HashMap k v -> Int
forall a b c. (a -> b -> c) -> b -> a -> c
flip HashMap k v -> Int -> Int
go) Int
n Array (HashMap k v)
ary
go (Collision Bitmap
_ Array (Leaf k v)
ary) Int
n = Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary
member :: (Eq k, Hashable k) => k -> HashMap k a -> Bool
member :: forall k a. (Eq k, Hashable k) => k -> HashMap k a -> Bool
member k
k HashMap k a
m = case k -> HashMap k a -> Maybe a
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k a
m of
Maybe a
Nothing -> Bool
False
Just a
_ -> Bool
True
{-# INLINABLE member #-}
lookup :: (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup :: forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k v
m = case k -> HashMap k v -> (# (# #) | v #)
forall k v.
(Eq k, Hashable k) =>
k -> HashMap k v -> (# (# #) | v #)
lookup# k
k HashMap k v
m of
(# (# #) | #) -> Maybe v
forall a. Maybe a
Nothing
(# | v
a #) -> v -> Maybe v
forall a. a -> Maybe a
Just v
a
{-# INLINE lookup #-}
lookup# :: (Eq k, Hashable k) => k -> HashMap k v -> (# (# #) | v #)
lookup# :: forall k v.
(Eq k, Hashable k) =>
k -> HashMap k v -> (# (# #) | v #)
lookup# k
k HashMap k v
m = ((# #) -> (# (# #) | v #))
-> (v -> Int -> (# (# #) | v #))
-> Bitmap
-> k
-> Int
-> HashMap k v
-> (# (# #) | v #)
forall r k v.
Eq k =>
((# #) -> r)
-> (v -> Int -> r) -> Bitmap -> k -> Int -> HashMap k v -> r
lookupCont (\(# #)
_ -> (# (# #) | #)) (\v
v Int
_i -> (# | v
v #)) (k -> Bitmap
forall a. Hashable a => a -> Bitmap
hash k
k) k
k Int
0 HashMap k v
m
{-# INLINABLE lookup# #-}
lookup' :: Eq k => Hash -> k -> HashMap k v -> Maybe v
lookup' :: forall k v. Eq k => Bitmap -> k -> HashMap k v -> Maybe v
lookup' Bitmap
h k
k HashMap k v
m = case Bitmap -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
forall k v.
Eq k =>
Bitmap -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
lookupRecordCollision# Bitmap
h k
k HashMap k v
m of
(# (# #) | #) -> Maybe v
forall a. Maybe a
Nothing
(# | (# v
a, Int#
_i #) #) -> v -> Maybe v
forall a. a -> Maybe a
Just v
a
{-# INLINE lookup' #-}
data LookupRes a = Absent | Present a !Int
lookupResToMaybe :: LookupRes a -> Maybe a
lookupResToMaybe :: forall a. LookupRes a -> Maybe a
lookupResToMaybe LookupRes a
Absent = Maybe a
forall a. Maybe a
Nothing
lookupResToMaybe (Present a
x Int
_) = a -> Maybe a
forall a. a -> Maybe a
Just a
x
{-# INLINE lookupResToMaybe #-}
lookupRecordCollision :: Eq k => Hash -> k -> HashMap k v -> LookupRes v
lookupRecordCollision :: forall k v. Eq k => Bitmap -> k -> HashMap k v -> LookupRes v
lookupRecordCollision Bitmap
h k
k HashMap k v
m = case Bitmap -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
forall k v.
Eq k =>
Bitmap -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
lookupRecordCollision# Bitmap
h k
k HashMap k v
m of
(# (# #) | #) -> LookupRes v
forall a. LookupRes a
Absent
(# | (# v
a, Int#
i #) #) -> v -> Int -> LookupRes v
forall a. a -> Int -> LookupRes a
Present v
a (Int# -> Int
I# Int#
i)
{-# INLINE lookupRecordCollision #-}
lookupRecordCollision# :: Eq k => Hash -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
lookupRecordCollision# :: forall k v.
Eq k =>
Bitmap -> k -> HashMap k v -> (# (# #) | (# v, Int# #) #)
lookupRecordCollision# Bitmap
h k
k HashMap k v
m =
((# #) -> (# (# #) | (# v, Int# #) #))
-> (v -> Int -> (# (# #) | (# v, Int# #) #))
-> Bitmap
-> k
-> Int
-> HashMap k v
-> (# (# #) | (# v, Int# #) #)
forall r k v.
Eq k =>
((# #) -> r)
-> (v -> Int -> r) -> Bitmap -> k -> Int -> HashMap k v -> r
lookupCont (\(# #)
_ -> (# (# #) | #)) (\v
v (I# Int#
i) -> (# | (# v
v, Int#
i #) #)) Bitmap
h k
k Int
0 HashMap k v
m
{-# INLINABLE lookupRecordCollision# #-}
lookupCont ::
forall rep (r :: TYPE rep) k v.
Eq k
=> ((# #) -> r)
-> (v -> Int -> r)
-> Hash
-> k
-> Int
-> HashMap k v -> r
lookupCont :: forall r k v.
Eq k =>
((# #) -> r)
-> (v -> Int -> r) -> Bitmap -> k -> Int -> HashMap k v -> r
lookupCont (# #) -> r
absent v -> Int -> r
present !Bitmap
h0 !k
k0 !Int
s0 !HashMap k v
m0 = Eq k => Bitmap -> k -> Int -> HashMap k v -> r
Bitmap -> k -> Int -> HashMap k v -> r
go Bitmap
h0 k
k0 Int
s0 HashMap k v
m0
where
go :: Eq k => Hash -> k -> Int -> HashMap k v -> r
go :: Eq k => Bitmap -> k -> Int -> HashMap k v -> r
go !Bitmap
_ !k
_ !Int
_ HashMap k v
Empty = (# #) -> r
absent (# #)
go Bitmap
h k
k Int
_ (Leaf Bitmap
hx (L k
kx v
x))
| Bitmap
h Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
hx Bool -> Bool -> Bool
&& k
k k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
kx = v -> Int -> r
present v
x (-Int
1)
| Bool
otherwise = (# #) -> r
absent (# #)
go Bitmap
h k
k Int
s (BitmapIndexed Bitmap
b Array (HashMap k v)
v)
| Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 = (# #) -> r
absent (# #)
| Bool
otherwise =
Eq k => Bitmap -> k -> Int -> HashMap k v -> r
Bitmap -> k -> Int -> HashMap k v -> r
go Bitmap
h k
k (Int -> Int
nextShift Int
s) (Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
v (Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m))
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
go Bitmap
h k
k Int
s (Full Array (HashMap k v)
v) =
Eq k => Bitmap -> k -> Int -> HashMap k v -> r
Bitmap -> k -> Int -> HashMap k v -> r
go Bitmap
h k
k (Int -> Int
nextShift Int
s) (Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
v (Bitmap -> Int -> Int
index Bitmap
h Int
s))
go Bitmap
h k
k Int
_ (Collision Bitmap
hx Array (Leaf k v)
v)
| Bitmap
h Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
hx = ((# #) -> r) -> (v -> Int -> r) -> k -> Array (Leaf k v) -> r
forall r k v.
Eq k =>
((# #) -> r) -> (v -> Int -> r) -> k -> Array (Leaf k v) -> r
lookupInArrayCont (# #) -> r
absent v -> Int -> r
present k
k Array (Leaf k v)
v
| Bool
otherwise = (# #) -> r
absent (# #)
{-# INLINE lookupCont #-}
(!?) :: (Eq k, Hashable k) => HashMap k v -> k -> Maybe v
!? :: forall k v. (Eq k, Hashable k) => HashMap k v -> k -> Maybe v
(!?) HashMap k v
m k
k = k -> HashMap k v -> Maybe v
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k v
m
{-# INLINE (!?) #-}
findWithDefault :: (Eq k, Hashable k)
=> v
-> k -> HashMap k v -> v
findWithDefault :: forall k v. (Eq k, Hashable k) => v -> k -> HashMap k v -> v
findWithDefault v
def k
k HashMap k v
t = case k -> HashMap k v -> Maybe v
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k v
t of
Just v
v -> v
v
Maybe v
_ -> v
def
{-# INLINABLE findWithDefault #-}
lookupDefault :: (Eq k, Hashable k)
=> v
-> k -> HashMap k v -> v
lookupDefault :: forall k v. (Eq k, Hashable k) => v -> k -> HashMap k v -> v
lookupDefault = v -> k -> HashMap k v -> v
forall k v. (Eq k, Hashable k) => v -> k -> HashMap k v -> v
findWithDefault
{-# INLINE lookupDefault #-}
(!) :: (Eq k, Hashable k, HasCallStack) => HashMap k v -> k -> v
! :: forall k v.
(Eq k, Hashable k, HasCallStack) =>
HashMap k v -> k -> v
(!) HashMap k v
m k
k = case k -> HashMap k v -> Maybe v
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k v
m of
Just v
v -> v
v
Maybe v
Nothing -> [Char] -> v
forall a. HasCallStack => [Char] -> a
error [Char]
"Data.HashMap.Internal.(!): key not found"
{-# INLINABLE (!) #-}
infixl 9 !
collision :: Hash -> Leaf k v -> Leaf k v -> HashMap k v
collision :: forall k v. Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
collision Bitmap
h !Leaf k v
e1 !Leaf k v
e2 =
let v :: Array (Leaf k v)
v = (forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v)
forall e. (forall s. ST s (MArray s e)) -> Array e
A.run ((forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v))
-> (forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v)
forall a b. (a -> b) -> a -> b
$ do MArray s (Leaf k v)
mary <- Int -> Leaf k v -> ST s (MArray s (Leaf k v))
forall a s. Int -> a -> ST s (MArray s a)
A.new Int
2 Leaf k v
e1
MArray s (Leaf k v) -> Int -> Leaf k v -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v)
mary Int
1 Leaf k v
e2
MArray s (Leaf k v) -> ST s (MArray s (Leaf k v))
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return MArray s (Leaf k v)
mary
in Bitmap -> Array (Leaf k v) -> HashMap k v
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h Array (Leaf k v)
v
{-# INLINE collision #-}
bitmapIndexedOrFull :: Bitmap -> A.Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull :: forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull Bitmap
b !Array (HashMap k v)
ary
| Bitmap
b Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
fullBitmap = Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary
| Bool
otherwise = Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b Array (HashMap k v)
ary
{-# INLINE bitmapIndexedOrFull #-}
insert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v
insert :: forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
insert k
k v
v HashMap k v
m = Bitmap -> k -> v -> HashMap k v -> HashMap k v
forall k v. Eq k => Bitmap -> k -> v -> HashMap k v -> HashMap k v
insert' (k -> Bitmap
forall a. Hashable a => a -> Bitmap
hash k
k) k
k v
v HashMap k v
m
{-# INLINABLE insert #-}
insert' :: Eq k => Hash -> k -> v -> HashMap k v -> HashMap k v
insert' :: forall k v. Eq k => Bitmap -> k -> v -> HashMap k v -> HashMap k v
insert' Bitmap
h0 k
k0 v
v0 HashMap k v
m0 = Bitmap -> k -> v -> Int -> HashMap k v -> HashMap k v
forall {t} {t}.
Eq t =>
Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h0 k
k0 v
v0 Int
0 HashMap k v
m0
where
go :: Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go !Bitmap
h !t
k t
x !Int
_ HashMap t t
Empty = Bitmap -> Leaf t t -> HashMap t t
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (t -> t -> Leaf t t
forall k v. k -> v -> Leaf k v
L t
k t
x)
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Leaf Bitmap
hy l :: Leaf t t
l@(L t
ky t
y))
| Bitmap
hy Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h = if t
ky t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== t
k
then if t
x t -> t -> Bool
forall a. a -> a -> Bool
`ptrEq` t
y
then HashMap t t
t
else Bitmap -> Leaf t t -> HashMap t t
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (t -> t -> Leaf t t
forall k v. k -> v -> Leaf k v
L t
k t
x)
else Bitmap -> Leaf t t -> Leaf t t -> HashMap t t
forall k v. Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
collision Bitmap
h Leaf t t
l (t -> t -> Leaf t t
forall k v. k -> v -> Leaf k v
L t
k t
x)
| Bool
otherwise = (forall s. ST s (HashMap t t)) -> HashMap t t
forall a. (forall s. ST s a) -> a
runST (Int
-> Bitmap -> t -> t -> Bitmap -> HashMap t t -> ST s (HashMap t t)
forall k v s.
Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
two Int
s Bitmap
h t
k t
x Bitmap
hy HashMap t t
t)
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(BitmapIndexed Bitmap
b Array (HashMap t t)
ary)
| Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 =
let !ary' :: Array (HashMap t t)
ary' = Array (HashMap t t) -> Int -> HashMap t t -> Array (HashMap t t)
forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap t t)
ary Int
i (HashMap t t -> Array (HashMap t t))
-> HashMap t t -> Array (HashMap t t)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Leaf t t -> HashMap t t
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (t -> t -> Leaf t t
forall k v. k -> v -> Leaf k v
L t
k t
x)
in Bitmap -> Array (HashMap t t) -> HashMap t t
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.|. Bitmap
m) Array (HashMap t t)
ary'
| Bool
otherwise =
let !st :: HashMap t t
st = Array (HashMap t t) -> Int -> HashMap t t
forall a. Array a -> Int -> a
A.index Array (HashMap t t)
ary Int
i
!st' :: HashMap t t
st' = Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h t
k t
x (Int -> Int
nextShift Int
s) HashMap t t
st
in if HashMap t t
st' HashMap t t -> HashMap t t -> Bool
forall a. a -> a -> Bool
`ptrEq` HashMap t t
st
then HashMap t t
t
else Bitmap -> Array (HashMap t t) -> HashMap t t
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b (Array (HashMap t t) -> Int -> HashMap t t -> Array (HashMap t t)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap t t)
ary Int
i HashMap t t
st')
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Full Array (HashMap t t)
ary) =
let !st :: HashMap t t
st = Array (HashMap t t) -> Int -> HashMap t t
forall a. Array a -> Int -> a
A.index Array (HashMap t t)
ary Int
i
!st' :: HashMap t t
st' = Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h t
k t
x (Int -> Int
nextShift Int
s) HashMap t t
st
in if HashMap t t
st' HashMap t t -> HashMap t t -> Bool
forall a. a -> a -> Bool
`ptrEq` HashMap t t
st
then HashMap t t
t
else Array (HashMap t t) -> HashMap t t
forall k v. Array (HashMap k v) -> HashMap k v
Full (Array (HashMap t t) -> Int -> HashMap t t -> Array (HashMap t t)
forall e. Array e -> Int -> e -> Array e
update32 Array (HashMap t t)
ary Int
i HashMap t t
st')
where i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Collision Bitmap
hy Array (Leaf t t)
v)
| Bitmap
h Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
hy = Bitmap -> Array (Leaf t t) -> HashMap t t
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h ((t -> t -> (# t #))
-> t -> t -> Array (Leaf t t) -> Array (Leaf t t)
forall k v.
Eq k =>
(v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWith (\t
a t
_ -> (# t
a #)) t
k t
x Array (Leaf t t)
v)
| Bool
otherwise = Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h t
k t
x Int
s (HashMap t t -> HashMap t t) -> HashMap t t -> HashMap t t
forall a b. (a -> b) -> a -> b
$ Bitmap -> Array (HashMap t t) -> HashMap t t
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap -> Int -> Bitmap
mask Bitmap
hy Int
s) (HashMap t t -> Array (HashMap t t)
forall a. a -> Array a
A.singleton HashMap t t
t)
{-# INLINABLE insert' #-}
insertNewKey :: Hash -> k -> v -> HashMap k v -> HashMap k v
insertNewKey :: forall k v. Bitmap -> k -> v -> HashMap k v -> HashMap k v
insertNewKey !Bitmap
h0 !k
k0 v
x0 !HashMap k v
m0 = Bitmap -> k -> v -> Int -> HashMap k v -> HashMap k v
forall {t} {t}.
Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h0 k
k0 v
x0 Int
0 HashMap k v
m0
where
go :: Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go !Bitmap
h !t
k t
x !Int
_ HashMap t t
Empty = Bitmap -> Leaf t t -> HashMap t t
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (t -> t -> Leaf t t
forall k v. k -> v -> Leaf k v
L t
k t
x)
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Leaf Bitmap
hy Leaf t t
l)
| Bitmap
hy Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h = Bitmap -> Leaf t t -> Leaf t t -> HashMap t t
forall k v. Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
collision Bitmap
h Leaf t t
l (t -> t -> Leaf t t
forall k v. k -> v -> Leaf k v
L t
k t
x)
| Bool
otherwise = (forall s. ST s (HashMap t t)) -> HashMap t t
forall a. (forall s. ST s a) -> a
runST (Int
-> Bitmap -> t -> t -> Bitmap -> HashMap t t -> ST s (HashMap t t)
forall k v s.
Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
two Int
s Bitmap
h t
k t
x Bitmap
hy HashMap t t
t)
go Bitmap
h t
k t
x Int
s (BitmapIndexed Bitmap
b Array (HashMap t t)
ary)
| Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 =
let !ary' :: Array (HashMap t t)
ary' = Array (HashMap t t) -> Int -> HashMap t t -> Array (HashMap t t)
forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap t t)
ary Int
i (HashMap t t -> Array (HashMap t t))
-> HashMap t t -> Array (HashMap t t)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Leaf t t -> HashMap t t
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (t -> t -> Leaf t t
forall k v. k -> v -> Leaf k v
L t
k t
x)
in Bitmap -> Array (HashMap t t) -> HashMap t t
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.|. Bitmap
m) Array (HashMap t t)
ary'
| Bool
otherwise =
let !st :: HashMap t t
st = Array (HashMap t t) -> Int -> HashMap t t
forall a. Array a -> Int -> a
A.index Array (HashMap t t)
ary Int
i
!st' :: HashMap t t
st' = Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h t
k t
x (Int -> Int
nextShift Int
s) HashMap t t
st
in Bitmap -> Array (HashMap t t) -> HashMap t t
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b (Array (HashMap t t) -> Int -> HashMap t t -> Array (HashMap t t)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap t t)
ary Int
i HashMap t t
st')
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Bitmap
h t
k t
x Int
s (Full Array (HashMap t t)
ary) =
let !st :: HashMap t t
st = Array (HashMap t t) -> Int -> HashMap t t
forall a. Array a -> Int -> a
A.index Array (HashMap t t)
ary Int
i
!st' :: HashMap t t
st' = Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h t
k t
x (Int -> Int
nextShift Int
s) HashMap t t
st
in Array (HashMap t t) -> HashMap t t
forall k v. Array (HashMap k v) -> HashMap k v
Full (Array (HashMap t t) -> Int -> HashMap t t -> Array (HashMap t t)
forall e. Array e -> Int -> e -> Array e
update32 Array (HashMap t t)
ary Int
i HashMap t t
st')
where i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Collision Bitmap
hy Array (Leaf t t)
v)
| Bitmap
h Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
hy = Bitmap -> Array (Leaf t t) -> HashMap t t
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h (Array (Leaf t t) -> Leaf t t -> Array (Leaf t t)
forall a. Array a -> a -> Array a
A.snoc Array (Leaf t t)
v (t -> t -> Leaf t t
forall k v. k -> v -> Leaf k v
L t
k t
x))
| Bool
otherwise =
Bitmap -> t -> t -> Int -> HashMap t t -> HashMap t t
go Bitmap
h t
k t
x Int
s (HashMap t t -> HashMap t t) -> HashMap t t -> HashMap t t
forall a b. (a -> b) -> a -> b
$ Bitmap -> Array (HashMap t t) -> HashMap t t
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap -> Int -> Bitmap
mask Bitmap
hy Int
s) (HashMap t t -> Array (HashMap t t)
forall a. a -> Array a
A.singleton HashMap t t
t)
{-# NOINLINE insertNewKey #-}
insertKeyExists :: Int -> Hash -> k -> v -> HashMap k v -> HashMap k v
insertKeyExists :: forall k v. Int -> Bitmap -> k -> v -> HashMap k v -> HashMap k v
insertKeyExists !Int
collPos0 !Bitmap
h0 !k
k0 v
x0 !HashMap k v
m0 = Int -> Bitmap -> k -> v -> HashMap k v -> HashMap k v
forall k v. Int -> Bitmap -> k -> v -> HashMap k v -> HashMap k v
go Int
collPos0 Bitmap
h0 k
k0 v
x0 HashMap k v
m0
where
go :: Int -> Bitmap -> t -> t -> HashMap t t -> HashMap t t
go !Int
_collPos !Bitmap
_shiftedHash !t
k t
x (Leaf Bitmap
h Leaf t t
_kx)
= Bitmap -> Leaf t t -> HashMap t t
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (t -> t -> Leaf t t
forall k v. k -> v -> Leaf k v
L t
k t
x)
go Int
collPos Bitmap
shiftedHash t
k t
x (BitmapIndexed Bitmap
b Array (HashMap t t)
ary) =
let !st :: HashMap t t
st = Array (HashMap t t) -> Int -> HashMap t t
forall a. Array a -> Int -> a
A.index Array (HashMap t t)
ary Int
i
!st' :: HashMap t t
st' = Int -> Bitmap -> t -> t -> HashMap t t -> HashMap t t
go Int
collPos (Bitmap -> Bitmap
forall {a}. Bits a => a -> a
shiftHash Bitmap
shiftedHash) t
k t
x HashMap t t
st
in Bitmap -> Array (HashMap t t) -> HashMap t t
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b (Array (HashMap t t) -> Int -> HashMap t t -> Array (HashMap t t)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap t t)
ary Int
i HashMap t t
st')
where m :: Bitmap
m = Bitmap -> Bitmap
mask' Bitmap
shiftedHash
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Int
collPos Bitmap
shiftedHash t
k t
x (Full Array (HashMap t t)
ary) =
let !st :: HashMap t t
st = Array (HashMap t t) -> Int -> HashMap t t
forall a. Array a -> Int -> a
A.index Array (HashMap t t)
ary Int
i
!st' :: HashMap t t
st' = Int -> Bitmap -> t -> t -> HashMap t t -> HashMap t t
go Int
collPos (Bitmap -> Bitmap
forall {a}. Bits a => a -> a
shiftHash Bitmap
shiftedHash) t
k t
x HashMap t t
st
in Array (HashMap t t) -> HashMap t t
forall k v. Array (HashMap k v) -> HashMap k v
Full (Array (HashMap t t) -> Int -> HashMap t t -> Array (HashMap t t)
forall e. Array e -> Int -> e -> Array e
update32 Array (HashMap t t)
ary Int
i HashMap t t
st')
where i :: Int
i = Bitmap -> Int
index' Bitmap
shiftedHash
go Int
collPos Bitmap
_shiftedHash t
k t
x (Collision Bitmap
h Array (Leaf t t)
v)
| Int
collPos Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 = Bitmap -> Array (Leaf t t) -> HashMap t t
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h (Int -> t -> t -> Array (Leaf t t) -> Array (Leaf t t)
forall k v. Int -> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
setAtPosition Int
collPos t
k t
x Array (Leaf t t)
v)
| Bool
otherwise = HashMap t t
forall k v. HashMap k v
Empty
go Int
_ Bitmap
_ t
_ t
_ HashMap t t
Empty = HashMap t t
forall k v. HashMap k v
Empty
index' :: Hash -> Int
index' :: Bitmap -> Int
index' Bitmap
w = Bitmap -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Bitmap -> Int) -> Bitmap -> Int
forall a b. (a -> b) -> a -> b
$ Bitmap
w Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
subkeyMask
{-# INLINE index' #-}
mask' :: Word -> Bitmap
mask' :: Bitmap -> Bitmap
mask' Bitmap
w = Bitmap
1 Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Bitmap -> Int
index' Bitmap
w
{-# INLINE mask' #-}
shiftHash :: a -> a
shiftHash a
h = a
h a -> Int -> a
forall a. Bits a => a -> Int -> a
`unsafeShiftR` Int
bitsPerSubkey
{-# INLINE shiftHash #-}
{-# NOINLINE insertKeyExists #-}
setAtPosition :: Int -> k -> v -> A.Array (Leaf k v) -> A.Array (Leaf k v)
setAtPosition :: forall k v. Int -> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
setAtPosition Int
i k
k v
x Array (Leaf k v)
ary = Array (Leaf k v) -> Int -> Leaf k v -> Array (Leaf k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (Leaf k v)
ary Int
i (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
{-# INLINE setAtPosition #-}
unsafeInsert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v
unsafeInsert :: forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k0 v
v0 HashMap k v
m0 = (forall s. ST s (HashMap k v)) -> HashMap k v
forall a. (forall s. ST s a) -> a
runST (Bitmap -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
forall {t} {t} {s}.
Eq t =>
Bitmap -> t -> t -> Int -> HashMap t t -> ST s (HashMap t t)
go Bitmap
h0 k
k0 v
v0 Int
0 HashMap k v
m0)
where
h0 :: Bitmap
h0 = k -> Bitmap
forall a. Hashable a => a -> Bitmap
hash k
k0
go :: Bitmap -> t -> t -> Int -> HashMap t t -> ST s (HashMap t t)
go !Bitmap
h !t
k t
x !Int
_ HashMap t t
Empty = HashMap t t -> ST s (HashMap t t)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap t t -> ST s (HashMap t t))
-> HashMap t t -> ST s (HashMap t t)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Leaf t t -> HashMap t t
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (t -> t -> Leaf t t
forall k v. k -> v -> Leaf k v
L t
k t
x)
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Leaf Bitmap
hy l :: Leaf t t
l@(L t
ky t
y))
| Bitmap
hy Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h = if t
ky t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== t
k
then if t
x t -> t -> Bool
forall a. a -> a -> Bool
`ptrEq` t
y
then HashMap t t -> ST s (HashMap t t)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap t t
t
else HashMap t t -> ST s (HashMap t t)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap t t -> ST s (HashMap t t))
-> HashMap t t -> ST s (HashMap t t)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Leaf t t -> HashMap t t
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (t -> t -> Leaf t t
forall k v. k -> v -> Leaf k v
L t
k t
x)
else HashMap t t -> ST s (HashMap t t)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap t t -> ST s (HashMap t t))
-> HashMap t t -> ST s (HashMap t t)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Leaf t t -> Leaf t t -> HashMap t t
forall k v. Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
collision Bitmap
h Leaf t t
l (t -> t -> Leaf t t
forall k v. k -> v -> Leaf k v
L t
k t
x)
| Bool
otherwise = Int
-> Bitmap -> t -> t -> Bitmap -> HashMap t t -> ST s (HashMap t t)
forall k v s.
Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
two Int
s Bitmap
h t
k t
x Bitmap
hy HashMap t t
t
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(BitmapIndexed Bitmap
b Array (HashMap t t)
ary)
| Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 = do
Array (HashMap t t)
ary' <- Array (HashMap t t)
-> Int -> HashMap t t -> ST s (Array (HashMap t t))
forall e s. Array e -> Int -> e -> ST s (Array e)
A.insertM Array (HashMap t t)
ary Int
i (HashMap t t -> ST s (Array (HashMap t t)))
-> HashMap t t -> ST s (Array (HashMap t t))
forall a b. (a -> b) -> a -> b
$! Bitmap -> Leaf t t -> HashMap t t
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (t -> t -> Leaf t t
forall k v. k -> v -> Leaf k v
L t
k t
x)
HashMap t t -> ST s (HashMap t t)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap t t -> ST s (HashMap t t))
-> HashMap t t -> ST s (HashMap t t)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Array (HashMap t t) -> HashMap t t
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.|. Bitmap
m) Array (HashMap t t)
ary'
| Bool
otherwise = do
HashMap t t
st <- Array (HashMap t t) -> Int -> ST s (HashMap t t)
forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap t t)
ary Int
i
HashMap t t
st' <- Bitmap -> t -> t -> Int -> HashMap t t -> ST s (HashMap t t)
go Bitmap
h t
k t
x (Int -> Int
nextShift Int
s) HashMap t t
st
Array (HashMap t t) -> Int -> HashMap t t -> ST s ()
forall e s. Array e -> Int -> e -> ST s ()
A.unsafeUpdateM Array (HashMap t t)
ary Int
i HashMap t t
st'
HashMap t t -> ST s (HashMap t t)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap t t
t
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Full Array (HashMap t t)
ary) = do
HashMap t t
st <- Array (HashMap t t) -> Int -> ST s (HashMap t t)
forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap t t)
ary Int
i
HashMap t t
st' <- Bitmap -> t -> t -> Int -> HashMap t t -> ST s (HashMap t t)
go Bitmap
h t
k t
x (Int -> Int
nextShift Int
s) HashMap t t
st
Array (HashMap t t) -> Int -> HashMap t t -> ST s ()
forall e s. Array e -> Int -> e -> ST s ()
A.unsafeUpdateM Array (HashMap t t)
ary Int
i HashMap t t
st'
HashMap t t -> ST s (HashMap t t)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap t t
t
where i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
go Bitmap
h t
k t
x Int
s t :: HashMap t t
t@(Collision Bitmap
hy Array (Leaf t t)
v)
| Bitmap
h Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
hy = HashMap t t -> ST s (HashMap t t)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap t t -> ST s (HashMap t t))
-> HashMap t t -> ST s (HashMap t t)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Array (Leaf t t) -> HashMap t t
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h ((t -> t -> (# t #))
-> t -> t -> Array (Leaf t t) -> Array (Leaf t t)
forall k v.
Eq k =>
(v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWith (\t
a t
_ -> (# t
a #)) t
k t
x Array (Leaf t t)
v)
| Bool
otherwise = Bitmap -> t -> t -> Int -> HashMap t t -> ST s (HashMap t t)
go Bitmap
h t
k t
x Int
s (HashMap t t -> ST s (HashMap t t))
-> HashMap t t -> ST s (HashMap t t)
forall a b. (a -> b) -> a -> b
$ Bitmap -> Array (HashMap t t) -> HashMap t t
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap -> Int -> Bitmap
mask Bitmap
hy Int
s) (HashMap t t -> Array (HashMap t t)
forall a. a -> Array a
A.singleton HashMap t t
t)
{-# INLINABLE unsafeInsert #-}
two :: Shift -> Hash -> k -> v -> Hash -> HashMap k v -> ST s (HashMap k v)
two :: forall k v s.
Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
two = Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
forall k v s.
Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
go
where
go :: Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
go Int
s Bitmap
h1 k
k1 v
v1 Bitmap
h2 HashMap k v
t2
| Bitmap
bp1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
bp2 = do
HashMap k v
st <- Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
go (Int -> Int
nextShift Int
s) Bitmap
h1 k
k1 v
v1 Bitmap
h2 HashMap k v
t2
Array (HashMap k v)
ary <- HashMap k v -> ST s (Array (HashMap k v))
forall a s. a -> ST s (Array a)
A.singletonM HashMap k v
st
HashMap k v -> ST s (HashMap k v)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$ Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
bp1 Array (HashMap k v)
ary
| Bool
otherwise = do
MArray s (HashMap k v)
mary <- Int -> HashMap k v -> ST s (MArray s (HashMap k v))
forall a s. Int -> a -> ST s (MArray s a)
A.new Int
2 (HashMap k v -> ST s (MArray s (HashMap k v)))
-> HashMap k v -> ST s (MArray s (HashMap k v))
forall a b. (a -> b) -> a -> b
$! Bitmap -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h1 (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k1 v
v1)
MArray s (HashMap k v) -> Int -> HashMap k v -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (HashMap k v)
mary Int
idx2 HashMap k v
t2
Array (HashMap k v)
ary <- MArray s (HashMap k v) -> ST s (Array (HashMap k v))
forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze MArray s (HashMap k v)
mary
HashMap k v -> ST s (HashMap k v)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$ Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap
bp1 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.|. Bitmap
bp2) Array (HashMap k v)
ary
where
bp1 :: Bitmap
bp1 = Bitmap -> Int -> Bitmap
mask Bitmap
h1 Int
s
bp2 :: Bitmap
bp2 = Bitmap -> Int -> Bitmap
mask Bitmap
h2 Int
s
!(I# Int#
i1) = Bitmap -> Int -> Int
index Bitmap
h1 Int
s
!(I# Int#
i2) = Bitmap -> Int -> Int
index Bitmap
h2 Int
s
idx2 :: Int
idx2 = Int# -> Int
I# (Int#
i1 Int# -> Int# -> Int#
Exts.<# Int#
i2)
{-# INLINE two #-}
insertWith :: (Eq k, Hashable k) => (v -> v -> v) -> k -> v -> HashMap k v
-> HashMap k v
insertWith :: forall k v.
(Eq k, Hashable k) =>
(v -> v -> v) -> k -> v -> HashMap k v -> HashMap k v
insertWith v -> v -> v
f k
k v
new HashMap k v
m = v -> (v -> (# v #)) -> k -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
v -> (v -> (# v #)) -> k -> HashMap k v -> HashMap k v
insertModifying v
new (\v
old -> (# v -> v -> v
f v
new v
old #)) k
k HashMap k v
m
{-# INLINE insertWith #-}
insertModifying :: (Eq k, Hashable k) => v -> (v -> (# v #)) -> k -> HashMap k v
-> HashMap k v
insertModifying :: forall k v.
(Eq k, Hashable k) =>
v -> (v -> (# v #)) -> k -> HashMap k v -> HashMap k v
insertModifying v
x v -> (# v #)
f k
k0 HashMap k v
m0 = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h0 k
k0 Int
0 HashMap k v
m0
where
!h0 :: Bitmap
h0 = k -> Bitmap
forall a. Hashable a => a -> Bitmap
hash k
k0
go :: Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go !Bitmap
h !k
k !Int
_ HashMap k v
Empty = Bitmap -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
go Bitmap
h k
k Int
s t :: HashMap k v
t@(Leaf Bitmap
hy l :: Leaf k v
l@(L k
ky v
y))
| Bitmap
hy Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h = if k
ky k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
k
then case v -> (# v #)
f v
y of
(# v
v' #) | v -> v -> Bool
forall a. a -> a -> Bool
ptrEq v
y v
v' -> HashMap k v
t
| Bool
otherwise -> Bitmap -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
v')
else Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
collision Bitmap
h Leaf k v
l (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
| Bool
otherwise = (forall s. ST s (HashMap k v)) -> HashMap k v
forall a. (forall s. ST s a) -> a
runST (Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
forall k v s.
Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
two Int
s Bitmap
h k
k v
x Bitmap
hy HashMap k v
t)
go Bitmap
h k
k Int
s t :: HashMap k v
t@(BitmapIndexed Bitmap
b Array (HashMap k v)
ary)
| Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 =
let ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap k v)
ary Int
i (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
in Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.|. Bitmap
m) Array (HashMap k v)
ary'
| Bool
otherwise =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h k
k (Int -> Int
nextShift Int
s) HashMap k v
st
ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! HashMap k v
st'
in if HashMap k v -> HashMap k v -> Bool
forall a. a -> a -> Bool
ptrEq HashMap k v
st HashMap k v
st'
then HashMap k v
t
else Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b Array (HashMap k v)
ary'
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Bitmap
h k
k Int
s t :: HashMap k v
t@(Full Array (HashMap k v)
ary) =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h k
k (Int -> Int
nextShift Int
s) HashMap k v
st
ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
update32 Array (HashMap k v)
ary Int
i (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! HashMap k v
st'
in if HashMap k v -> HashMap k v -> Bool
forall a. a -> a -> Bool
ptrEq HashMap k v
st HashMap k v
st'
then HashMap k v
t
else Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
where i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
go Bitmap
h k
k Int
s t :: HashMap k v
t@(Collision Bitmap
hy Array (Leaf k v)
v)
| Bitmap
h Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
hy =
let !v' :: Array (Leaf k v)
v' = v -> (v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
v -> (v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
insertModifyingArr v
x v -> (# v #)
f k
k Array (Leaf k v)
v
in if Array (Leaf k v) -> Array (Leaf k v) -> Bool
forall a b. Array a -> Array b -> Bool
A.unsafeSameArray Array (Leaf k v)
v Array (Leaf k v)
v'
then HashMap k v
t
else Bitmap -> Array (Leaf k v) -> HashMap k v
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h Array (Leaf k v)
v'
| Bool
otherwise = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h k
k Int
s (HashMap k v -> HashMap k v) -> HashMap k v -> HashMap k v
forall a b. (a -> b) -> a -> b
$ Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap -> Int -> Bitmap
mask Bitmap
hy Int
s) (HashMap k v -> Array (HashMap k v)
forall a. a -> Array a
A.singleton HashMap k v
t)
{-# INLINABLE insertModifying #-}
insertModifyingArr :: Eq k => v -> (v -> (# v #)) -> k -> A.Array (Leaf k v)
-> A.Array (Leaf k v)
insertModifyingArr :: forall k v.
Eq k =>
v -> (v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
insertModifyingArr v
x v -> (# v #)
f k
k0 Array (Leaf k v)
ary0 = k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k0 Array (Leaf k v)
ary0 Int
0 (Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary0)
where
go :: k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go !k
k !Array (Leaf k v)
ary !Int
i !Int
n
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = Array (Leaf k v) -> Leaf k v -> Array (Leaf k v)
forall a. Array a -> a -> Array a
A.snoc Array (Leaf k v)
ary (Leaf k v -> Array (Leaf k v)) -> Leaf k v -> Array (Leaf k v)
forall a b. (a -> b) -> a -> b
$ k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x
| Bool
otherwise = case Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
ary Int
i of
(L k
kx v
y) | k
k k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
kx -> case v -> (# v #)
f v
y of
(# v
y' #) -> if v -> v -> Bool
forall a. a -> a -> Bool
ptrEq v
y v
y'
then Array (Leaf k v)
ary
else Array (Leaf k v) -> Int -> Leaf k v -> Array (Leaf k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (Leaf k v)
ary Int
i (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
y')
| Bool
otherwise -> k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k Array (Leaf k v)
ary (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
n
{-# INLINE insertModifyingArr #-}
unsafeInsertWith :: forall k v. (Eq k, Hashable k)
=> (v -> v -> v) -> k -> v -> HashMap k v
-> HashMap k v
unsafeInsertWith :: forall k v.
(Eq k, Hashable k) =>
(v -> v -> v) -> k -> v -> HashMap k v -> HashMap k v
unsafeInsertWith v -> v -> v
f k
k0 v
v0 HashMap k v
m0 = (k -> v -> v -> (# v #)) -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
(k -> v -> v -> (# v #)) -> k -> v -> HashMap k v -> HashMap k v
unsafeInsertWithKey (\k
_ v
a v
b -> (# v -> v -> v
f v
a v
b #)) k
k0 v
v0 HashMap k v
m0
{-# INLINABLE unsafeInsertWith #-}
unsafeInsertWithKey :: forall k v. (Eq k, Hashable k)
=> (k -> v -> v -> (# v #)) -> k -> v -> HashMap k v
-> HashMap k v
unsafeInsertWithKey :: forall k v.
(Eq k, Hashable k) =>
(k -> v -> v -> (# v #)) -> k -> v -> HashMap k v -> HashMap k v
unsafeInsertWithKey k -> v -> v -> (# v #)
f k
k0 v
v0 HashMap k v
m0 = (forall s. ST s (HashMap k v)) -> HashMap k v
forall a. (forall s. ST s a) -> a
runST (Bitmap -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
forall s.
Bitmap -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Bitmap
h0 k
k0 v
v0 Int
0 HashMap k v
m0)
where
h0 :: Bitmap
h0 = k -> Bitmap
forall a. Hashable a => a -> Bitmap
hash k
k0
go :: Hash -> k -> v -> Shift -> HashMap k v -> ST s (HashMap k v)
go :: forall s.
Bitmap -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go !Bitmap
h !k
k v
x !Int
_ HashMap k v
Empty = HashMap k v -> ST s (HashMap k v)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
go Bitmap
h k
k v
x Int
s t :: HashMap k v
t@(Leaf Bitmap
hy l :: Leaf k v
l@(L k
ky v
y))
| Bitmap
hy Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h = if k
ky k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
k
then case k -> v -> v -> (# v #)
f k
k v
x v
y of
(# v
v #) -> HashMap k v -> ST s (HashMap k v)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
v)
else HashMap k v -> ST s (HashMap k v)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
collision Bitmap
h Leaf k v
l (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
| Bool
otherwise = Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
forall k v s.
Int
-> Bitmap -> k -> v -> Bitmap -> HashMap k v -> ST s (HashMap k v)
two Int
s Bitmap
h k
k v
x Bitmap
hy HashMap k v
t
go Bitmap
h k
k v
x Int
s t :: HashMap k v
t@(BitmapIndexed Bitmap
b Array (HashMap k v)
ary)
| Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 = do
Array (HashMap k v)
ary' <- Array (HashMap k v)
-> Int -> HashMap k v -> ST s (Array (HashMap k v))
forall e s. Array e -> Int -> e -> ST s (Array e)
A.insertM Array (HashMap k v)
ary Int
i (HashMap k v -> ST s (Array (HashMap k v)))
-> HashMap k v -> ST s (Array (HashMap k v))
forall a b. (a -> b) -> a -> b
$! Bitmap -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
x)
HashMap k v -> ST s (HashMap k v)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull (Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.|. Bitmap
m) Array (HashMap k v)
ary'
| Bool
otherwise = do
HashMap k v
st <- Array (HashMap k v) -> Int -> ST s (HashMap k v)
forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap k v)
ary Int
i
HashMap k v
st' <- Bitmap -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
forall s.
Bitmap -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Bitmap
h k
k v
x (Int -> Int
nextShift Int
s) HashMap k v
st
Array (HashMap k v) -> Int -> HashMap k v -> ST s ()
forall e s. Array e -> Int -> e -> ST s ()
A.unsafeUpdateM Array (HashMap k v)
ary Int
i HashMap k v
st'
HashMap k v -> ST s (HashMap k v)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v
t
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Bitmap
h k
k v
x Int
s t :: HashMap k v
t@(Full Array (HashMap k v)
ary) = do
HashMap k v
st <- Array (HashMap k v) -> Int -> ST s (HashMap k v)
forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap k v)
ary Int
i
HashMap k v
st' <- Bitmap -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
forall s.
Bitmap -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Bitmap
h k
k v
x (Int -> Int
nextShift Int
s) HashMap k v
st
Array (HashMap k v) -> Int -> HashMap k v -> ST s ()
forall e s. Array e -> Int -> e -> ST s ()
A.unsafeUpdateM Array (HashMap k v)
ary Int
i HashMap k v
st'
HashMap k v -> ST s (HashMap k v)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v
t
where i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
go Bitmap
h k
k v
x Int
s t :: HashMap k v
t@(Collision Bitmap
hy Array (Leaf k v)
v)
| Bitmap
h Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
hy = HashMap k v -> ST s (HashMap k v)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Array (Leaf k v) -> HashMap k v
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h ((k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWithKey k -> v -> v -> (# v #)
f k
k v
x Array (Leaf k v)
v)
| Bool
otherwise = Bitmap -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
forall s.
Bitmap -> k -> v -> Int -> HashMap k v -> ST s (HashMap k v)
go Bitmap
h k
k v
x Int
s (HashMap k v -> ST s (HashMap k v))
-> HashMap k v -> ST s (HashMap k v)
forall a b. (a -> b) -> a -> b
$ Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap -> Int -> Bitmap
mask Bitmap
hy Int
s) (HashMap k v -> Array (HashMap k v)
forall a. a -> Array a
A.singleton HashMap k v
t)
{-# INLINABLE unsafeInsertWithKey #-}
delete :: (Eq k, Hashable k) => k -> HashMap k v -> HashMap k v
delete :: forall k v. (Eq k, Hashable k) => k -> HashMap k v -> HashMap k v
delete k
k HashMap k v
m = Bitmap -> k -> HashMap k v -> HashMap k v
forall k v. Eq k => Bitmap -> k -> HashMap k v -> HashMap k v
delete' (k -> Bitmap
forall a. Hashable a => a -> Bitmap
hash k
k) k
k HashMap k v
m
{-# INLINABLE delete #-}
delete' :: Eq k => Hash -> k -> HashMap k v -> HashMap k v
delete' :: forall k v. Eq k => Bitmap -> k -> HashMap k v -> HashMap k v
delete' Bitmap
h0 k
k0 HashMap k v
m0 = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
forall {k} {v}.
Eq k =>
Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h0 k
k0 Int
0 HashMap k v
m0
where
go :: Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go !Bitmap
_ !k
_ !Int
_ HashMap k v
Empty = HashMap k v
forall k v. HashMap k v
Empty
go Bitmap
h k
k Int
_ t :: HashMap k v
t@(Leaf Bitmap
hy (L k
ky v
_))
| Bitmap
hy Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h Bool -> Bool -> Bool
&& k
ky k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
k = HashMap k v
forall k v. HashMap k v
Empty
| Bool
otherwise = HashMap k v
t
go Bitmap
h k
k Int
s t :: HashMap k v
t@(BitmapIndexed Bitmap
b Array (HashMap k v)
ary)
| Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 = HashMap k v
t
| Bool
otherwise =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h k
k (Int -> Int
nextShift Int
s) HashMap k v
st
in if HashMap k v
st' HashMap k v -> HashMap k v -> Bool
forall a. a -> a -> Bool
`ptrEq` HashMap k v
st
then HashMap k v
t
else case HashMap k v
st' of
HashMap k v
Empty | Array (HashMap k v) -> Int
forall a. Array a -> Int
A.length Array (HashMap k v)
ary Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 -> HashMap k v
forall k v. HashMap k v
Empty
| Array (HashMap k v) -> Int
forall a. Array a -> Int
A.length Array (HashMap k v)
ary Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2 ->
case (Int
i, Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
0, Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
1) of
(Int
0, HashMap k v
_, HashMap k v
l) | HashMap k v -> Bool
forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l -> HashMap k v
l
(Int
1, HashMap k v
l, HashMap k v
_) | HashMap k v -> Bool
forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l -> HashMap k v
l
(Int, HashMap k v, HashMap k v)
_ -> HashMap k v
bIndexed
| Bool
otherwise -> HashMap k v
bIndexed
where
bIndexed :: HashMap k v
bIndexed = Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap -> Bitmap
forall {a}. Bits a => a -> a
complement Bitmap
m) (Array (HashMap k v) -> Int -> Array (HashMap k v)
forall e. Array e -> Int -> Array e
A.delete Array (HashMap k v)
ary Int
i)
HashMap k v
l | HashMap k v -> Bool
forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l Bool -> Bool -> Bool
&& Array (HashMap k v) -> Int
forall a. Array a -> Int
A.length Array (HashMap k v)
ary Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 -> HashMap k v
l
HashMap k v
_ -> Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b (Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i HashMap k v
st')
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Bitmap
h k
k Int
s t :: HashMap k v
t@(Full Array (HashMap k v)
ary) =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h k
k (Int -> Int
nextShift Int
s) HashMap k v
st
in if HashMap k v
st' HashMap k v -> HashMap k v -> Bool
forall a. a -> a -> Bool
`ptrEq` HashMap k v
st
then HashMap k v
t
else case HashMap k v
st' of
HashMap k v
Empty ->
let ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> Array (HashMap k v)
forall e. Array e -> Int -> Array e
A.delete Array (HashMap k v)
ary Int
i
bm :: Bitmap
bm = Bitmap
fullBitmap Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap -> Bitmap
forall {a}. Bits a => a -> a
complement (Bitmap
1 Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
i)
in Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
bm Array (HashMap k v)
ary'
HashMap k v
_ -> Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full (Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i HashMap k v
st')
where i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
go Bitmap
h k
k Int
_ t :: HashMap k v
t@(Collision Bitmap
hy Array (Leaf k v)
v)
| Bitmap
h Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
hy = case k -> Array (Leaf k v) -> Maybe Int
forall k v. Eq k => k -> Array (Leaf k v) -> Maybe Int
indexOf k
k Array (Leaf k v)
v of
Just Int
i
| Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
v Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2 ->
if Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0
then Bitmap -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
v Int
1)
else Bitmap -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
v Int
0)
| Bool
otherwise -> Bitmap -> Array (Leaf k v) -> HashMap k v
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h (Array (Leaf k v) -> Int -> Array (Leaf k v)
forall e. Array e -> Int -> Array e
A.delete Array (Leaf k v)
v Int
i)
Maybe Int
Nothing -> HashMap k v
t
| Bool
otherwise = HashMap k v
t
{-# INLINABLE delete' #-}
deleteKeyExists :: Int -> Hash -> k -> HashMap k v -> HashMap k v
deleteKeyExists :: forall k v. Int -> Bitmap -> k -> HashMap k v -> HashMap k v
deleteKeyExists !Int
collPos0 !Bitmap
h0 !k
k0 !HashMap k v
m0 = Int -> Bitmap -> k -> HashMap k v -> HashMap k v
forall k v. Int -> Bitmap -> k -> HashMap k v -> HashMap k v
go Int
collPos0 Bitmap
h0 k
k0 HashMap k v
m0
where
go :: Int -> Word -> k -> HashMap k v -> HashMap k v
go :: forall k v. Int -> Bitmap -> k -> HashMap k v -> HashMap k v
go !Int
_collPos !Bitmap
_shiftedHash !k
_k (Leaf Bitmap
_ Leaf k v
_) = HashMap k v
forall k v. HashMap k v
Empty
go Int
collPos Bitmap
shiftedHash k
k (BitmapIndexed Bitmap
b Array (HashMap k v)
ary) =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Int -> Bitmap -> k -> HashMap k v -> HashMap k v
forall k v. Int -> Bitmap -> k -> HashMap k v -> HashMap k v
go Int
collPos (Bitmap -> Bitmap
forall {a}. Bits a => a -> a
shiftHash Bitmap
shiftedHash) k
k HashMap k v
st
in case HashMap k v
st' of
HashMap k v
Empty | Array (HashMap k v) -> Int
forall a. Array a -> Int
A.length Array (HashMap k v)
ary Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 -> HashMap k v
forall k v. HashMap k v
Empty
| Array (HashMap k v) -> Int
forall a. Array a -> Int
A.length Array (HashMap k v)
ary Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2 ->
case (Int
i, Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
0, Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
1) of
(Int
0, HashMap k v
_, HashMap k v
l) | HashMap k v -> Bool
forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l -> HashMap k v
l
(Int
1, HashMap k v
l, HashMap k v
_) | HashMap k v -> Bool
forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l -> HashMap k v
l
(Int, HashMap k v, HashMap k v)
_ -> HashMap k v
bIndexed
| Bool
otherwise -> HashMap k v
bIndexed
where
bIndexed :: HashMap k v
bIndexed = Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap -> Bitmap
forall {a}. Bits a => a -> a
complement Bitmap
m) (Array (HashMap k v) -> Int -> Array (HashMap k v)
forall e. Array e -> Int -> Array e
A.delete Array (HashMap k v)
ary Int
i)
HashMap k v
l | HashMap k v -> Bool
forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v
l Bool -> Bool -> Bool
&& Array (HashMap k v) -> Int
forall a. Array a -> Int
A.length Array (HashMap k v)
ary Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 -> HashMap k v
l
HashMap k v
_ -> Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b (Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i HashMap k v
st')
where m :: Bitmap
m = Bitmap -> Bitmap
mask' Bitmap
shiftedHash
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Int
collPos Bitmap
shiftedHash k
k (Full Array (HashMap k v)
ary) =
let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Int -> Bitmap -> k -> HashMap k v -> HashMap k v
forall k v. Int -> Bitmap -> k -> HashMap k v -> HashMap k v
go Int
collPos (Bitmap -> Bitmap
forall {a}. Bits a => a -> a
shiftHash Bitmap
shiftedHash) k
k HashMap k v
st
in case HashMap k v
st' of
HashMap k v
Empty ->
let ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> Array (HashMap k v)
forall e. Array e -> Int -> Array e
A.delete Array (HashMap k v)
ary Int
i
bm :: Bitmap
bm = Bitmap
fullBitmap Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap -> Bitmap
forall {a}. Bits a => a -> a
complement (Bitmap
1 Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
i)
in Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
bm Array (HashMap k v)
ary'
HashMap k v
_ -> Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full (Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i HashMap k v
st')
where i :: Int
i = Bitmap -> Int
index' Bitmap
shiftedHash
go Int
collPos Bitmap
_shiftedHash k
_k (Collision Bitmap
h Array (Leaf k v)
v)
| Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
v Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2
= if Int
collPos Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0
then Bitmap -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
v Int
1)
else Bitmap -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
v Int
0)
| Bool
otherwise = Bitmap -> Array (Leaf k v) -> HashMap k v
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h (Array (Leaf k v) -> Int -> Array (Leaf k v)
forall e. Array e -> Int -> Array e
A.delete Array (Leaf k v)
v Int
collPos)
go !Int
_ !Bitmap
_ !k
_ HashMap k v
Empty = HashMap k v
forall k v. HashMap k v
Empty
index' :: Hash -> Int
index' :: Bitmap -> Int
index' Bitmap
w = Bitmap -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Bitmap -> Int) -> Bitmap -> Int
forall a b. (a -> b) -> a -> b
$ Bitmap
w Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
subkeyMask
{-# INLINE index' #-}
mask' :: Word -> Bitmap
mask' :: Bitmap -> Bitmap
mask' Bitmap
w = Bitmap
1 Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Bitmap -> Int
index' Bitmap
w
{-# INLINE mask' #-}
shiftHash :: a -> a
shiftHash a
h = a
h a -> Int -> a
forall a. Bits a => a -> Int -> a
`unsafeShiftR` Int
bitsPerSubkey
{-# INLINE shiftHash #-}
{-# NOINLINE deleteKeyExists #-}
adjust :: (Eq k, Hashable k) => (v -> v) -> k -> HashMap k v -> HashMap k v
adjust :: forall k v.
(Eq k, Hashable k) =>
(v -> v) -> k -> HashMap k v -> HashMap k v
adjust v -> v
f k
k HashMap k v
m = (v -> (# v #)) -> k -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
(v -> (# v #)) -> k -> HashMap k v -> HashMap k v
adjust# (\v
v -> (# v -> v
f v
v #)) k
k HashMap k v
m
{-# INLINE adjust #-}
adjust# :: (Eq k, Hashable k) => (v -> (# v #)) -> k -> HashMap k v -> HashMap k v
adjust# :: forall k v.
(Eq k, Hashable k) =>
(v -> (# v #)) -> k -> HashMap k v -> HashMap k v
adjust# v -> (# v #)
f k
k0 HashMap k v
m0 = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h0 k
k0 Int
0 HashMap k v
m0
where
h0 :: Bitmap
h0 = k -> Bitmap
forall a. Hashable a => a -> Bitmap
hash k
k0
go :: Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go !Bitmap
_ !k
_ !Int
_ HashMap k v
Empty = HashMap k v
forall k v. HashMap k v
Empty
go Bitmap
h k
k Int
_ t :: HashMap k v
t@(Leaf Bitmap
hy (L k
ky v
y))
| Bitmap
hy Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h Bool -> Bool -> Bool
&& k
ky k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
k = case v -> (# v #)
f v
y of
(# v
y' #) | v -> v -> Bool
forall a. a -> a -> Bool
ptrEq v
y v
y' -> HashMap k v
t
| Bool
otherwise -> Bitmap -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
y')
| Bool
otherwise = HashMap k v
t
go Bitmap
h k
k Int
s t :: HashMap k v
t@(BitmapIndexed Bitmap
b Array (HashMap k v)
ary)
| Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 = HashMap k v
t
| Bool
otherwise = let !st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h k
k (Int -> Int
nextShift Int
s) HashMap k v
st
ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (HashMap k v)
ary Int
i (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! HashMap k v
st'
in if HashMap k v -> HashMap k v -> Bool
forall a. a -> a -> Bool
ptrEq HashMap k v
st HashMap k v
st'
then HashMap k v
t
else Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b Array (HashMap k v)
ary'
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m
go Bitmap
h k
k Int
s t :: HashMap k v
t@(Full Array (HashMap k v)
ary) =
let i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h Int
s
!st :: HashMap k v
st = Array (HashMap k v) -> Int -> HashMap k v
forall a. Array a -> Int -> a
A.index Array (HashMap k v)
ary Int
i
!st' :: HashMap k v
st' = Bitmap -> k -> Int -> HashMap k v -> HashMap k v
go Bitmap
h k
k (Int -> Int
nextShift Int
s) HashMap k v
st
ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
update32 Array (HashMap k v)
ary Int
i (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! HashMap k v
st'
in if HashMap k v -> HashMap k v -> Bool
forall a. a -> a -> Bool
ptrEq HashMap k v
st HashMap k v
st'
then HashMap k v
t
else Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
go Bitmap
h k
k Int
_ t :: HashMap k v
t@(Collision Bitmap
hy Array (Leaf k v)
v)
| Bitmap
h Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
hy = let !v' :: Array (Leaf k v)
v' = (v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
(v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
updateWith# v -> (# v #)
f k
k Array (Leaf k v)
v
in if Array (Leaf k v) -> Array (Leaf k v) -> Bool
forall a b. Array a -> Array b -> Bool
A.unsafeSameArray Array (Leaf k v)
v Array (Leaf k v)
v'
then HashMap k v
t
else Bitmap -> Array (Leaf k v) -> HashMap k v
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h Array (Leaf k v)
v'
| Bool
otherwise = HashMap k v
t
{-# INLINABLE adjust# #-}
update :: (Eq k, Hashable k) => (a -> Maybe a) -> k -> HashMap k a -> HashMap k a
update :: forall k a.
(Eq k, Hashable k) =>
(a -> Maybe a) -> k -> HashMap k a -> HashMap k a
update a -> Maybe a
f = (Maybe a -> Maybe a) -> k -> HashMap k a -> HashMap k a
forall k v.
(Eq k, Hashable k) =>
(Maybe v -> Maybe v) -> k -> HashMap k v -> HashMap k v
alter (Maybe a -> (a -> Maybe a) -> Maybe a
forall a b. Maybe a -> (a -> Maybe b) -> Maybe b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= a -> Maybe a
f)
{-# INLINABLE update #-}
alter :: (Eq k, Hashable k) => (Maybe v -> Maybe v) -> k -> HashMap k v -> HashMap k v
alter :: forall k v.
(Eq k, Hashable k) =>
(Maybe v -> Maybe v) -> k -> HashMap k v -> HashMap k v
alter Maybe v -> Maybe v
f k
k HashMap k v
m =
let !h :: Bitmap
h = k -> Bitmap
forall a. Hashable a => a -> Bitmap
hash k
k
!lookupRes :: LookupRes v
lookupRes = Bitmap -> k -> HashMap k v -> LookupRes v
forall k v. Eq k => Bitmap -> k -> HashMap k v -> LookupRes v
lookupRecordCollision Bitmap
h k
k HashMap k v
m
in case Maybe v -> Maybe v
f (LookupRes v -> Maybe v
forall a. LookupRes a -> Maybe a
lookupResToMaybe LookupRes v
lookupRes) of
Maybe v
Nothing -> case LookupRes v
lookupRes of
LookupRes v
Absent -> HashMap k v
m
Present v
_ Int
collPos -> Int -> Bitmap -> k -> HashMap k v -> HashMap k v
forall k v. Int -> Bitmap -> k -> HashMap k v -> HashMap k v
deleteKeyExists Int
collPos Bitmap
h k
k HashMap k v
m
Just v
v' -> case LookupRes v
lookupRes of
LookupRes v
Absent -> Bitmap -> k -> v -> HashMap k v -> HashMap k v
forall k v. Bitmap -> k -> v -> HashMap k v -> HashMap k v
insertNewKey Bitmap
h k
k v
v' HashMap k v
m
Present v
v Int
collPos ->
if v
v v -> v -> Bool
forall a. a -> a -> Bool
`ptrEq` v
v'
then HashMap k v
m
else Int -> Bitmap -> k -> v -> HashMap k v -> HashMap k v
forall k v. Int -> Bitmap -> k -> v -> HashMap k v -> HashMap k v
insertKeyExists Int
collPos Bitmap
h k
k v
v' HashMap k v
m
{-# INLINABLE alter #-}
alterF :: (Functor f, Eq k, Hashable k)
=> (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterF :: forall (f :: * -> *) k v.
(Functor f, Eq k, Hashable k) =>
(Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterF Maybe v -> f (Maybe v)
f = \ !k
k !HashMap k v
m ->
let
!h :: Bitmap
h = k -> Bitmap
forall a. Hashable a => a -> Bitmap
hash k
k
mv :: Maybe v
mv = Bitmap -> k -> HashMap k v -> Maybe v
forall k v. Eq k => Bitmap -> k -> HashMap k v -> Maybe v
lookup' Bitmap
h k
k HashMap k v
m
in ((Maybe v -> HashMap k v) -> f (Maybe v) -> f (HashMap k v)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe v -> f (Maybe v)
f Maybe v
mv) ((Maybe v -> HashMap k v) -> f (HashMap k v))
-> (Maybe v -> HashMap k v) -> f (HashMap k v)
forall a b. (a -> b) -> a -> b
$ \case
Maybe v
Nothing -> HashMap k v -> (v -> HashMap k v) -> Maybe v -> HashMap k v
forall b a. b -> (a -> b) -> Maybe a -> b
maybe HashMap k v
m (HashMap k v -> v -> HashMap k v
forall a b. a -> b -> a
const (Bitmap -> k -> HashMap k v -> HashMap k v
forall k v. Eq k => Bitmap -> k -> HashMap k v -> HashMap k v
delete' Bitmap
h k
k HashMap k v
m)) Maybe v
mv
Just v
v' -> Bitmap -> k -> v -> HashMap k v -> HashMap k v
forall k v. Eq k => Bitmap -> k -> v -> HashMap k v -> HashMap k v
insert' Bitmap
h k
k v
v' HashMap k v
m
{-# INLINABLE [0] alterF #-}
test_bottom :: a
test_bottom :: forall a. a
test_bottom = [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"Data.HashMap.alterF internal error: hit test_bottom"
bogus# :: (# #) -> (# a #)
bogus# :: forall a. (# #) -> (# a #)
bogus# (# #)
_ = [Char] -> (# a #)
forall a. HasCallStack => [Char] -> a
error [Char]
"Data.HashMap.alterF internal error: hit bogus#"
{-# RULES
-- We probe the behavior of @f@ by applying it to Nothing and to
-- Just test_bottom. Based on the results, and how they relate to
-- each other, we choose the best implementation.
"alterFWeird" forall f. alterF f =
alterFWeird (f Nothing) (f (Just test_bottom)) f
-- This rule covers situations where alterF is used to simply insert or
-- delete in Identity (most likely via Control.Lens.At). We recognize here
-- (through the repeated @x@ on the LHS) that
--
-- @f Nothing = f (Just bottom)@,
--
-- which guarantees that @f@ doesn't care what its argument is, so
-- we don't have to either.
--
-- Why only Identity? A variant of this rule is actually valid regardless of
-- the functor, but for some functors (e.g., []), it can lead to the
-- same keys being compared multiple times, which is bad if they're
-- ugly things like strings. This is unfortunate, since the rule is likely
-- a good idea for almost all realistic uses, but I don't like nasty
-- edge cases.
"alterFconstant" forall (f :: Maybe a -> Identity (Maybe a)) x.
alterFWeird x x f = \ !k !m ->
Identity (case runIdentity x of {Nothing -> delete k m; Just a -> insert k a m})
-- This rule handles the case where 'alterF' is used to do 'insertWith'-like
-- things. Whenever possible, GHC will get rid of the Maybe nonsense for us.
-- We delay this rule to stage 1 so alterFconstant has a chance to fire.
"alterFinsertWith" [1] forall (f :: Maybe a -> Identity (Maybe a)) x y.
alterFWeird (coerce (Just x)) (coerce (Just y)) f =
coerce (insertModifying x (\mold -> case runIdentity (f (Just mold)) of
Nothing -> bogus# (# #)
Just new -> (# new #)))
-- Handle the case where someone uses 'alterF' instead of 'adjust'. This
-- rule is kind of picky; it will only work if the function doesn't
-- do anything between case matching on the Maybe and producing a result.
"alterFadjust" forall (f :: Maybe a -> Identity (Maybe a)) _y.
alterFWeird (coerce Nothing) (coerce (Just _y)) f =
coerce (adjust# (\x -> case runIdentity (f (Just x)) of
Just x' -> (# x' #)
Nothing -> bogus# (# #)))
-- The simple specialization to Const; in this case we can look up
-- the key without caring what position it's in. This is only a tiny
-- optimization.
"alterFlookup" forall _ign1 _ign2 (f :: Maybe a -> Const r (Maybe a)).
alterFWeird _ign1 _ign2 f = \ !k !m -> Const (getConst (f (lookup k m)))
#-}
alterFWeird
:: (Functor f, Eq k, Hashable k)
=> f (Maybe v)
-> f (Maybe v)
-> (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterFWeird :: forall (f :: * -> *) k v.
(Functor f, Eq k, Hashable k) =>
f (Maybe v)
-> f (Maybe v)
-> (Maybe v -> f (Maybe v))
-> k
-> HashMap k v
-> f (HashMap k v)
alterFWeird f (Maybe v)
_ f (Maybe v)
_ Maybe v -> f (Maybe v)
f = (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
forall (f :: * -> *) k v.
(Functor f, Eq k, Hashable k) =>
(Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterFEager Maybe v -> f (Maybe v)
f
{-# INLINE [0] alterFWeird #-}
alterFEager :: (Functor f, Eq k, Hashable k)
=> (Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterFEager :: forall (f :: * -> *) k v.
(Functor f, Eq k, Hashable k) =>
(Maybe v -> f (Maybe v)) -> k -> HashMap k v -> f (HashMap k v)
alterFEager Maybe v -> f (Maybe v)
f !k
k HashMap k v
m = ((Maybe v -> HashMap k v) -> f (Maybe v) -> f (HashMap k v)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe v -> f (Maybe v)
f Maybe v
mv) ((Maybe v -> HashMap k v) -> f (HashMap k v))
-> (Maybe v -> HashMap k v) -> f (HashMap k v)
forall a b. (a -> b) -> a -> b
$ \case
Maybe v
Nothing -> case LookupRes v
lookupRes of
LookupRes v
Absent -> HashMap k v
m
Present v
_ Int
collPos -> Int -> Bitmap -> k -> HashMap k v -> HashMap k v
forall k v. Int -> Bitmap -> k -> HashMap k v -> HashMap k v
deleteKeyExists Int
collPos Bitmap
h k
k HashMap k v
m
Just v
v' -> case LookupRes v
lookupRes of
LookupRes v
Absent -> Bitmap -> k -> v -> HashMap k v -> HashMap k v
forall k v. Bitmap -> k -> v -> HashMap k v -> HashMap k v
insertNewKey Bitmap
h k
k v
v' HashMap k v
m
Present v
v Int
collPos ->
if v
v v -> v -> Bool
forall a. a -> a -> Bool
`ptrEq` v
v'
then HashMap k v
m
else Int -> Bitmap -> k -> v -> HashMap k v -> HashMap k v
forall k v. Int -> Bitmap -> k -> v -> HashMap k v -> HashMap k v
insertKeyExists Int
collPos Bitmap
h k
k v
v' HashMap k v
m
where !h :: Bitmap
h = k -> Bitmap
forall a. Hashable a => a -> Bitmap
hash k
k
!lookupRes :: LookupRes v
lookupRes = Bitmap -> k -> HashMap k v -> LookupRes v
forall k v. Eq k => Bitmap -> k -> HashMap k v -> LookupRes v
lookupRecordCollision Bitmap
h k
k HashMap k v
m
!mv :: Maybe v
mv = LookupRes v -> Maybe v
forall a. LookupRes a -> Maybe a
lookupResToMaybe LookupRes v
lookupRes
{-# INLINABLE alterFEager #-}
isSubmapOf :: (Eq k, Hashable k, Eq v) => HashMap k v -> HashMap k v -> Bool
isSubmapOf :: forall k v.
(Eq k, Hashable k, Eq v) =>
HashMap k v -> HashMap k v -> Bool
isSubmapOf = ((v -> v -> Bool) -> HashMap k v -> HashMap k v -> Bool)
-> (v -> v -> Bool) -> HashMap k v -> HashMap k v -> Bool
forall a. a -> a
Exts.inline (v -> v -> Bool) -> HashMap k v -> HashMap k v -> Bool
forall k v1 v2.
(Eq k, Hashable k) =>
(v1 -> v2 -> Bool) -> HashMap k v1 -> HashMap k v2 -> Bool
isSubmapOfBy v -> v -> Bool
forall a. Eq a => a -> a -> Bool
(==)
{-# INLINABLE isSubmapOf #-}
isSubmapOfBy :: (Eq k, Hashable k) => (v1 -> v2 -> Bool) -> HashMap k v1 -> HashMap k v2 -> Bool
isSubmapOfBy :: forall k v1 v2.
(Eq k, Hashable k) =>
(v1 -> v2 -> Bool) -> HashMap k v1 -> HashMap k v2 -> Bool
isSubmapOfBy v1 -> v2 -> Bool
comp !HashMap k v1
m1 !HashMap k v2
m2 = Int -> HashMap k v1 -> HashMap k v2 -> Bool
go Int
0 HashMap k v1
m1 HashMap k v2
m2
where
go :: Int -> HashMap k v1 -> HashMap k v2 -> Bool
go Int
_ HashMap k v1
Empty HashMap k v2
_ = Bool
True
go Int
_ HashMap k v1
_ HashMap k v2
Empty = Bool
False
go Int
s (Leaf Bitmap
h1 (L k
k1 v1
v1)) HashMap k v2
t2 = ((# #) -> Bool)
-> (v2 -> Int -> Bool)
-> Bitmap
-> k
-> Int
-> HashMap k v2
-> Bool
forall r k v.
Eq k =>
((# #) -> r)
-> (v -> Int -> r) -> Bitmap -> k -> Int -> HashMap k v -> r
lookupCont (\(# #)
_ -> Bool
False) (\v2
v2 Int
_ -> v1 -> v2 -> Bool
comp v1
v1 v2
v2) Bitmap
h1 k
k1 Int
s HashMap k v2
t2
go Int
_ (Collision Bitmap
h1 Array (Leaf k v1)
ls1) (Collision Bitmap
h2 Array (Leaf k v2)
ls2) =
Bitmap
h1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h2 Bool -> Bool -> Bool
&& (v1 -> v2 -> Bool)
-> Array (Leaf k v1) -> Array (Leaf k v2) -> Bool
forall k v1 v2.
Eq k =>
(v1 -> v2 -> Bool)
-> Array (Leaf k v1) -> Array (Leaf k v2) -> Bool
subsetArray v1 -> v2 -> Bool
comp Array (Leaf k v1)
ls1 Array (Leaf k v2)
ls2
go Int
s t1 :: HashMap k v1
t1@(Collision Bitmap
h1 Array (Leaf k v1)
_) (BitmapIndexed Bitmap
b Array (HashMap k v2)
ls2)
| Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 = Bool
False
| Bool
otherwise =
Int -> HashMap k v1 -> HashMap k v2 -> Bool
go (Int -> Int
nextShift Int
s) HashMap k v1
t1 (Array (HashMap k v2) -> Int -> HashMap k v2
forall a. Array a -> Int -> a
A.index Array (HashMap k v2)
ls2 (Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m))
where m :: Bitmap
m = Bitmap -> Int -> Bitmap
mask Bitmap
h1 Int
s
go Int
s t1 :: HashMap k v1
t1@(Collision Bitmap
h1 Array (Leaf k v1)
_) (Full Array (HashMap k v2)
ls2) =
Int -> HashMap k v1 -> HashMap k v2 -> Bool
go (Int -> Int
nextShift Int
s) HashMap k v1
t1 (Array (HashMap k v2) -> Int -> HashMap k v2
forall a. Array a -> Int -> a
A.index Array (HashMap k v2)
ls2 (Bitmap -> Int -> Int
index Bitmap
h1 Int
s))
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v1)
ls1) (BitmapIndexed Bitmap
b2 Array (HashMap k v2)
ls2) =
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Bitmap
-> Array (HashMap k v1)
-> Bitmap
-> Array (HashMap k v2)
-> Bool
forall k v1 v2.
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Bitmap
-> Array (HashMap k v1)
-> Bitmap
-> Array (HashMap k v2)
-> Bool
submapBitmapIndexed (Int -> HashMap k v1 -> HashMap k v2 -> Bool
go (Int -> Int
nextShift Int
s)) Bitmap
b1 Array (HashMap k v1)
ls1 Bitmap
b2 Array (HashMap k v2)
ls2
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v1)
ls1) (Full Array (HashMap k v2)
ls2) =
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Bitmap
-> Array (HashMap k v1)
-> Bitmap
-> Array (HashMap k v2)
-> Bool
forall k v1 v2.
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Bitmap
-> Array (HashMap k v1)
-> Bitmap
-> Array (HashMap k v2)
-> Bool
submapBitmapIndexed (Int -> HashMap k v1 -> HashMap k v2 -> Bool
go (Int -> Int
nextShift Int
s)) Bitmap
b1 Array (HashMap k v1)
ls1 Bitmap
fullBitmap Array (HashMap k v2)
ls2
go Int
s (Full Array (HashMap k v1)
ls1) (Full Array (HashMap k v2)
ls2) =
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Bitmap
-> Array (HashMap k v1)
-> Bitmap
-> Array (HashMap k v2)
-> Bool
forall k v1 v2.
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Bitmap
-> Array (HashMap k v1)
-> Bitmap
-> Array (HashMap k v2)
-> Bool
submapBitmapIndexed (Int -> HashMap k v1 -> HashMap k v2 -> Bool
go (Int -> Int
nextShift Int
s)) Bitmap
fullBitmap Array (HashMap k v1)
ls1 Bitmap
fullBitmap Array (HashMap k v2)
ls2
go Int
_ (Collision {}) (Leaf {}) = Bool
False
go Int
_ (BitmapIndexed {}) (Leaf {}) = Bool
False
go Int
_ (Full {}) (Leaf {}) = Bool
False
go Int
_ (BitmapIndexed {}) (Collision {}) = Bool
False
go Int
_ (Full {}) (Collision {}) = Bool
False
go Int
_ (Full {}) (BitmapIndexed {}) = Bool
False
{-# INLINABLE isSubmapOfBy #-}
submapBitmapIndexed :: (HashMap k v1 -> HashMap k v2 -> Bool) -> Bitmap -> A.Array (HashMap k v1) -> Bitmap -> A.Array (HashMap k v2) -> Bool
submapBitmapIndexed :: forall k v1 v2.
(HashMap k v1 -> HashMap k v2 -> Bool)
-> Bitmap
-> Array (HashMap k v1)
-> Bitmap
-> Array (HashMap k v2)
-> Bool
submapBitmapIndexed HashMap k v1 -> HashMap k v2 -> Bool
comp !Bitmap
b1 !Array (HashMap k v1)
ary1 !Bitmap
b2 !Array (HashMap k v2)
ary2 = Bool
subsetBitmaps Bool -> Bool -> Bool
&& Int -> Int -> Bitmap -> Bool
go Int
0 Int
0 (Bitmap
b1Orb2 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap -> Bitmap
forall a. Num a => a -> a
negate Bitmap
b1Orb2)
where
go :: Int -> Int -> Bitmap -> Bool
go :: Int -> Int -> Bitmap -> Bool
go !Int
i !Int
j !Bitmap
m
| Bitmap
m Bitmap -> Bitmap -> Bool
forall a. Ord a => a -> a -> Bool
> Bitmap
b1Orb2 = Bool
True
| Bitmap
b1Andb2 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
/= Bitmap
0 = HashMap k v1 -> HashMap k v2 -> Bool
comp (Array (HashMap k v1) -> Int -> HashMap k v1
forall a. Array a -> Int -> a
A.index Array (HashMap k v1)
ary1 Int
i) (Array (HashMap k v2) -> Int -> HashMap k v2
forall a. Array a -> Int -> a
A.index Array (HashMap k v2)
ary2 Int
j) Bool -> Bool -> Bool
&&
Int -> Int -> Bitmap -> Bool
go (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
jInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Bitmap
m Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1)
| Bitmap
b2 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
/= Bitmap
0 = Int -> Int -> Bitmap -> Bool
go Int
i (Int
jInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Bitmap
m Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1)
| Bool
otherwise = Int -> Int -> Bitmap -> Bool
go Int
i Int
j (Bitmap
m Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1)
b1Andb2 :: Bitmap
b1Andb2 = Bitmap
b1 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
b2
b1Orb2 :: Bitmap
b1Orb2 = Bitmap
b1 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.|. Bitmap
b2
subsetBitmaps :: Bool
subsetBitmaps = Bitmap
b1Orb2 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
b2
{-# INLINABLE submapBitmapIndexed #-}
union :: Eq k => HashMap k v -> HashMap k v -> HashMap k v
union :: forall k v. Eq k => HashMap k v -> HashMap k v -> HashMap k v
union = (v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
forall k v.
Eq k =>
(v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
unionWith v -> v -> v
forall a b. a -> b -> a
const
{-# INLINABLE union #-}
unionWith :: Eq k => (v -> v -> v) -> HashMap k v -> HashMap k v
-> HashMap k v
unionWith :: forall k v.
Eq k =>
(v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
unionWith v -> v -> v
f = (k -> v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
forall k v.
Eq k =>
(k -> v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
unionWithKey ((v -> v -> v) -> k -> v -> v -> v
forall a b. a -> b -> a
const v -> v -> v
f)
{-# INLINE unionWith #-}
unionWithKey :: Eq k => (k -> v -> v -> v) -> HashMap k v -> HashMap k v
-> HashMap k v
unionWithKey :: forall k v.
Eq k =>
(k -> v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
unionWithKey k -> v -> v -> v
f = Int -> HashMap k v -> HashMap k v -> HashMap k v
go Int
0
where
go :: Int -> HashMap k v -> HashMap k v -> HashMap k v
go !Int
_ HashMap k v
t1 HashMap k v
Empty = HashMap k v
t1
go Int
_ HashMap k v
Empty HashMap k v
t2 = HashMap k v
t2
go Int
s t1 :: HashMap k v
t1@(Leaf Bitmap
h1 l1 :: Leaf k v
l1@(L k
k1 v
v1)) t2 :: HashMap k v
t2@(Leaf Bitmap
h2 l2 :: Leaf k v
l2@(L k
k2 v
v2))
| Bitmap
h1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h2 = if k
k1 k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
k2
then Bitmap -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h1 (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k1 (k -> v -> v -> v
f k
k1 v
v1 v
v2))
else Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
forall k v. Bitmap -> Leaf k v -> Leaf k v -> HashMap k v
collision Bitmap
h1 Leaf k v
l1 Leaf k v
l2
| Bool
otherwise = Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
forall {k} {v}.
Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash Int
s Bitmap
h1 Bitmap
h2 HashMap k v
t1 HashMap k v
t2
go Int
s t1 :: HashMap k v
t1@(Leaf Bitmap
h1 (L k
k1 v
v1)) t2 :: HashMap k v
t2@(Collision Bitmap
h2 Array (Leaf k v)
ls2)
| Bitmap
h1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h2 = Bitmap -> Array (Leaf k v) -> HashMap k v
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h1 ((k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWithKey (\k
k v
a v
b -> (# k -> v -> v -> v
f k
k v
a v
b #)) k
k1 v
v1 Array (Leaf k v)
ls2)
| Bool
otherwise = Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
forall {k} {v}.
Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash Int
s Bitmap
h1 Bitmap
h2 HashMap k v
t1 HashMap k v
t2
go Int
s t1 :: HashMap k v
t1@(Collision Bitmap
h1 Array (Leaf k v)
ls1) t2 :: HashMap k v
t2@(Leaf Bitmap
h2 (L k
k2 v
v2))
| Bitmap
h1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h2 = Bitmap -> Array (Leaf k v) -> HashMap k v
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h1 ((k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWithKey (\k
k v
a v
b -> (# k -> v -> v -> v
f k
k v
b v
a #)) k
k2 v
v2 Array (Leaf k v)
ls1)
| Bool
otherwise = Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
forall {k} {v}.
Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash Int
s Bitmap
h1 Bitmap
h2 HashMap k v
t1 HashMap k v
t2
go Int
s t1 :: HashMap k v
t1@(Collision Bitmap
h1 Array (Leaf k v)
ls1) t2 :: HashMap k v
t2@(Collision Bitmap
h2 Array (Leaf k v)
ls2)
| Bitmap
h1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h2 = Bitmap -> Array (Leaf k v) -> HashMap k v
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h1 ((k -> v -> v -> (# v #))
-> Array (Leaf k v) -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> Array (Leaf k v) -> Array (Leaf k v) -> Array (Leaf k v)
updateOrConcatWithKey (\k
k v
a v
b -> (# k -> v -> v -> v
f k
k v
a v
b #)) Array (Leaf k v)
ls1 Array (Leaf k v)
ls2)
| Bool
otherwise = Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
forall {k} {v}.
Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash Int
s Bitmap
h1 Bitmap
h2 HashMap k v
t1 HashMap k v
t2
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v)
ary1) (BitmapIndexed Bitmap
b2 Array (HashMap k v)
ary2) =
let b' :: Bitmap
b' = Bitmap
b1 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.|. Bitmap
b2
ary' :: Array (HashMap k v)
ary' = (HashMap k v -> HashMap k v -> HashMap k v)
-> Bitmap
-> Bitmap
-> Array (HashMap k v)
-> Array (HashMap k v)
-> Array (HashMap k v)
forall a.
(a -> a -> a) -> Bitmap -> Bitmap -> Array a -> Array a -> Array a
unionArrayBy (Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int -> Int
nextShift Int
s)) Bitmap
b1 Bitmap
b2 Array (HashMap k v)
ary1 Array (HashMap k v)
ary2
in Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull Bitmap
b' Array (HashMap k v)
ary'
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v)
ary1) (Full Array (HashMap k v)
ary2) =
let ary' :: Array (HashMap k v)
ary' = (HashMap k v -> HashMap k v -> HashMap k v)
-> Bitmap
-> Bitmap
-> Array (HashMap k v)
-> Array (HashMap k v)
-> Array (HashMap k v)
forall a.
(a -> a -> a) -> Bitmap -> Bitmap -> Array a -> Array a -> Array a
unionArrayBy (Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int -> Int
nextShift Int
s)) Bitmap
b1 Bitmap
fullBitmap Array (HashMap k v)
ary1 Array (HashMap k v)
ary2
in Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
go Int
s (Full Array (HashMap k v)
ary1) (BitmapIndexed Bitmap
b2 Array (HashMap k v)
ary2) =
let ary' :: Array (HashMap k v)
ary' = (HashMap k v -> HashMap k v -> HashMap k v)
-> Bitmap
-> Bitmap
-> Array (HashMap k v)
-> Array (HashMap k v)
-> Array (HashMap k v)
forall a.
(a -> a -> a) -> Bitmap -> Bitmap -> Array a -> Array a -> Array a
unionArrayBy (Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int -> Int
nextShift Int
s)) Bitmap
fullBitmap Bitmap
b2 Array (HashMap k v)
ary1 Array (HashMap k v)
ary2
in Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
go Int
s (Full Array (HashMap k v)
ary1) (Full Array (HashMap k v)
ary2) =
let ary' :: Array (HashMap k v)
ary' = (HashMap k v -> HashMap k v -> HashMap k v)
-> Bitmap
-> Bitmap
-> Array (HashMap k v)
-> Array (HashMap k v)
-> Array (HashMap k v)
forall a.
(a -> a -> a) -> Bitmap -> Bitmap -> Array a -> Array a -> Array a
unionArrayBy (Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int -> Int
nextShift Int
s)) Bitmap
fullBitmap Bitmap
fullBitmap
Array (HashMap k v)
ary1 Array (HashMap k v)
ary2
in Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v)
ary1) HashMap k v
t2
| Bitmap
b1 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m2 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 = let ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap k v)
ary1 Int
i HashMap k v
t2
b' :: Bitmap
b' = Bitmap
b1 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.|. Bitmap
m2
in Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull Bitmap
b' Array (HashMap k v)
ary'
| Bool
otherwise = let ary' :: Array (HashMap k v)
ary' = Array (HashMap k v)
-> Int -> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall e. Array e -> Int -> (e -> e) -> Array e
A.updateWith' Array (HashMap k v)
ary1 Int
i ((HashMap k v -> HashMap k v) -> Array (HashMap k v))
-> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$ \HashMap k v
st1 ->
Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int -> Int
nextShift Int
s) HashMap k v
st1 HashMap k v
t2
in Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b1 Array (HashMap k v)
ary'
where
h2 :: Bitmap
h2 = HashMap k v -> Bitmap
forall {k} {v}. HashMap k v -> Bitmap
leafHashCode HashMap k v
t2
m2 :: Bitmap
m2 = Bitmap -> Int -> Bitmap
mask Bitmap
h2 Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b1 Bitmap
m2
go Int
s HashMap k v
t1 (BitmapIndexed Bitmap
b2 Array (HashMap k v)
ary2)
| Bitmap
b2 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 = let ary' :: Array (HashMap k v)
ary' = Array (HashMap k v) -> Int -> HashMap k v -> Array (HashMap k v)
forall e. Array e -> Int -> e -> Array e
A.insert Array (HashMap k v)
ary2 Int
i (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! HashMap k v
t1
b' :: Bitmap
b' = Bitmap
b2 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.|. Bitmap
m1
in Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull Bitmap
b' Array (HashMap k v)
ary'
| Bool
otherwise = let ary' :: Array (HashMap k v)
ary' = Array (HashMap k v)
-> Int -> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall e. Array e -> Int -> (e -> e) -> Array e
A.updateWith' Array (HashMap k v)
ary2 Int
i ((HashMap k v -> HashMap k v) -> Array (HashMap k v))
-> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$ \HashMap k v
st2 ->
Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int -> Int
nextShift Int
s) HashMap k v
t1 HashMap k v
st2
in Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b2 Array (HashMap k v)
ary'
where
h1 :: Bitmap
h1 = HashMap k v -> Bitmap
forall {k} {v}. HashMap k v -> Bitmap
leafHashCode HashMap k v
t1
m1 :: Bitmap
m1 = Bitmap -> Int -> Bitmap
mask Bitmap
h1 Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b2 Bitmap
m1
go Int
s (Full Array (HashMap k v)
ary1) HashMap k v
t2 =
let h2 :: Bitmap
h2 = HashMap k v -> Bitmap
forall {k} {v}. HashMap k v -> Bitmap
leafHashCode HashMap k v
t2
i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h2 Int
s
ary' :: Array (HashMap k v)
ary' = Array (HashMap k v)
-> Int -> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall e. Array e -> Int -> (e -> e) -> Array e
update32With' Array (HashMap k v)
ary1 Int
i ((HashMap k v -> HashMap k v) -> Array (HashMap k v))
-> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$ \HashMap k v
st1 -> Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int -> Int
nextShift Int
s) HashMap k v
st1 HashMap k v
t2
in Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
go Int
s HashMap k v
t1 (Full Array (HashMap k v)
ary2) =
let h1 :: Bitmap
h1 = HashMap k v -> Bitmap
forall {k} {v}. HashMap k v -> Bitmap
leafHashCode HashMap k v
t1
i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h1 Int
s
ary' :: Array (HashMap k v)
ary' = Array (HashMap k v)
-> Int -> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall e. Array e -> Int -> (e -> e) -> Array e
update32With' Array (HashMap k v)
ary2 Int
i ((HashMap k v -> HashMap k v) -> Array (HashMap k v))
-> (HashMap k v -> HashMap k v) -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$ \HashMap k v
st2 -> Int -> HashMap k v -> HashMap k v -> HashMap k v
go (Int -> Int
nextShift Int
s) HashMap k v
t1 HashMap k v
st2
in Array (HashMap k v) -> HashMap k v
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v)
ary'
leafHashCode :: HashMap k v -> Bitmap
leafHashCode (Leaf Bitmap
h Leaf k v
_) = Bitmap
h
leafHashCode (Collision Bitmap
h Array (Leaf k v)
_) = Bitmap
h
leafHashCode HashMap k v
_ = [Char] -> Bitmap
forall a. HasCallStack => [Char] -> a
error [Char]
"leafHashCode"
goDifferentHash :: Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash Int
s Bitmap
h1 Bitmap
h2 HashMap k v
t1 HashMap k v
t2
| Bitmap
m1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
m2 = Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
m1 (HashMap k v -> Array (HashMap k v)
forall a. a -> Array a
A.singleton (HashMap k v -> Array (HashMap k v))
-> HashMap k v -> Array (HashMap k v)
forall a b. (a -> b) -> a -> b
$! Int
-> Bitmap -> Bitmap -> HashMap k v -> HashMap k v -> HashMap k v
goDifferentHash (Int -> Int
nextShift Int
s) Bitmap
h1 Bitmap
h2 HashMap k v
t1 HashMap k v
t2)
| Bitmap
m1 Bitmap -> Bitmap -> Bool
forall a. Ord a => a -> a -> Bool
< Bitmap
m2 = Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap
m1 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.|. Bitmap
m2) (HashMap k v -> HashMap k v -> Array (HashMap k v)
forall a. a -> a -> Array a
A.pair HashMap k v
t1 HashMap k v
t2)
| Bool
otherwise = Bitmap -> Array (HashMap k v) -> HashMap k v
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed (Bitmap
m1 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.|. Bitmap
m2) (HashMap k v -> HashMap k v -> Array (HashMap k v)
forall a. a -> a -> Array a
A.pair HashMap k v
t2 HashMap k v
t1)
where
m1 :: Bitmap
m1 = Bitmap -> Int -> Bitmap
mask Bitmap
h1 Int
s
m2 :: Bitmap
m2 = Bitmap -> Int -> Bitmap
mask Bitmap
h2 Int
s
{-# INLINE unionWithKey #-}
unionArrayBy :: (a -> a -> a) -> Bitmap -> Bitmap -> A.Array a -> A.Array a
-> A.Array a
unionArrayBy :: forall a.
(a -> a -> a) -> Bitmap -> Bitmap -> Array a -> Array a -> Array a
unionArrayBy a -> a -> a
f !Bitmap
b1 !Bitmap
b2 !Array a
ary1 !Array a
ary2 = (forall s. ST s (MArray s a)) -> Array a
forall e. (forall s. ST s (MArray s e)) -> Array e
A.run ((forall s. ST s (MArray s a)) -> Array a)
-> (forall s. ST s (MArray s a)) -> Array a
forall a b. (a -> b) -> a -> b
$ do
let bCombined :: Bitmap
bCombined = Bitmap
b1 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.|. Bitmap
b2
MArray s a
mary <- Int -> ST s (MArray s a)
forall s a. Int -> ST s (MArray s a)
A.new_ (Bitmap -> Int
forall a. Bits a => a -> Int
popCount Bitmap
bCombined)
let go :: Int -> Int -> Int -> Bitmap -> ST s ()
go !Int
i !Int
i1 !Int
i2 !Bitmap
b
| Bitmap
b Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 = () -> ST s ()
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Bitmap -> Bool
testBit (Bitmap
b1 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
b2) = do
a
x1 <- Array a -> Int -> ST s a
forall a s. Array a -> Int -> ST s a
A.indexM Array a
ary1 Int
i1
a
x2 <- Array a -> Int -> ST s a
forall a s. Array a -> Int -> ST s a
A.indexM Array a
ary2 Int
i2
MArray s a -> Int -> a -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s a
mary Int
i (a -> ST s ()) -> a -> ST s ()
forall a b. (a -> b) -> a -> b
$! a -> a -> a
f a
x1 a
x2
Int -> Int -> Int -> Bitmap -> ST s ()
go (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
i1Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
i2Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Bitmap
b'
| Bitmap -> Bool
testBit Bitmap
b1 = do
MArray s a -> Int -> a -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s a
mary Int
i (a -> ST s ()) -> ST s a -> ST s ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Array a -> Int -> ST s a
forall a s. Array a -> Int -> ST s a
A.indexM Array a
ary1 Int
i1
Int -> Int -> Int -> Bitmap -> ST s ()
go (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
i1Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
i2 Bitmap
b'
| Bool
otherwise = do
MArray s a -> Int -> a -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s a
mary Int
i (a -> ST s ()) -> ST s a -> ST s ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Array a -> Int -> ST s a
forall a s. Array a -> Int -> ST s a
A.indexM Array a
ary2 Int
i2
Int -> Int -> Int -> Bitmap -> ST s ()
go (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
i1 (Int
i2Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Bitmap
b'
where
m :: Bitmap
m = Bitmap
1 Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Bitmap -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros Bitmap
b
testBit :: Bitmap -> Bool
testBit Bitmap
x = Bitmap
x Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
/= Bitmap
0
b' :: Bitmap
b' = Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap -> Bitmap
forall {a}. Bits a => a -> a
complement Bitmap
m
Int -> Int -> Int -> Bitmap -> ST s ()
go Int
0 Int
0 Int
0 Bitmap
bCombined
MArray s a -> ST s (MArray s a)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return MArray s a
mary
{-# INLINE unionArrayBy #-}
unions :: Eq k => [HashMap k v] -> HashMap k v
unions :: forall k v. Eq k => [HashMap k v] -> HashMap k v
unions = (HashMap k v -> HashMap k v -> HashMap k v)
-> HashMap k v -> [HashMap k v] -> HashMap k v
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' HashMap k v -> HashMap k v -> HashMap k v
forall k v. Eq k => HashMap k v -> HashMap k v -> HashMap k v
union HashMap k v
forall k v. HashMap k v
empty
{-# INLINE unions #-}
compose :: (Eq b, Hashable b) => HashMap b c -> HashMap a b -> HashMap a c
compose :: forall b c a.
(Eq b, Hashable b) =>
HashMap b c -> HashMap a b -> HashMap a c
compose HashMap b c
bc !HashMap a b
ab
| HashMap b c -> Bool
forall k a. HashMap k a -> Bool
null HashMap b c
bc = HashMap a c
forall k v. HashMap k v
empty
| Bool
otherwise = (b -> Maybe c) -> HashMap a b -> HashMap a c
forall v1 v2 k. (v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybe (HashMap b c
bc HashMap b c -> b -> Maybe c
forall k v. (Eq k, Hashable k) => HashMap k v -> k -> Maybe v
!?) HashMap a b
ab
mapWithKey :: (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
mapWithKey :: forall k v1 v2. (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
mapWithKey k -> v1 -> v2
f = HashMap k v1 -> HashMap k v2
go
where
go :: HashMap k v1 -> HashMap k v2
go HashMap k v1
Empty = HashMap k v2
forall k v. HashMap k v
Empty
go (Leaf Bitmap
h (L k
k v1
v)) = Bitmap -> Leaf k v2 -> HashMap k v2
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (Leaf k v2 -> HashMap k v2) -> Leaf k v2 -> HashMap k v2
forall a b. (a -> b) -> a -> b
$ k -> v2 -> Leaf k v2
forall k v. k -> v -> Leaf k v
L k
k (k -> v1 -> v2
f k
k v1
v)
go (BitmapIndexed Bitmap
b Array (HashMap k v1)
ary) = Bitmap -> Array (HashMap k v2) -> HashMap k v2
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b (Array (HashMap k v2) -> HashMap k v2)
-> Array (HashMap k v2) -> HashMap k v2
forall a b. (a -> b) -> a -> b
$ (HashMap k v1 -> HashMap k v2)
-> Array (HashMap k v1) -> Array (HashMap k v2)
forall a b. (a -> b) -> Array a -> Array b
A.map HashMap k v1 -> HashMap k v2
go Array (HashMap k v1)
ary
go (Full Array (HashMap k v1)
ary) = Array (HashMap k v2) -> HashMap k v2
forall k v. Array (HashMap k v) -> HashMap k v
Full (Array (HashMap k v2) -> HashMap k v2)
-> Array (HashMap k v2) -> HashMap k v2
forall a b. (a -> b) -> a -> b
$ (HashMap k v1 -> HashMap k v2)
-> Array (HashMap k v1) -> Array (HashMap k v2)
forall a b. (a -> b) -> Array a -> Array b
A.map HashMap k v1 -> HashMap k v2
go Array (HashMap k v1)
ary
go (Collision Bitmap
h Array (Leaf k v1)
ary) = Bitmap -> Array (Leaf k v2) -> HashMap k v2
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h (Array (Leaf k v2) -> HashMap k v2)
-> Array (Leaf k v2) -> HashMap k v2
forall a b. (a -> b) -> a -> b
$
(Leaf k v1 -> Leaf k v2) -> Array (Leaf k v1) -> Array (Leaf k v2)
forall a b. (a -> b) -> Array a -> Array b
A.map' (\ (L k
k v1
v) -> k -> v2 -> Leaf k v2
forall k v. k -> v -> Leaf k v
L k
k (k -> v1 -> v2
f k
k v1
v)) Array (Leaf k v1)
ary
{-# INLINE mapWithKey #-}
map :: (v1 -> v2) -> HashMap k v1 -> HashMap k v2
map :: forall v1 v2 k. (v1 -> v2) -> HashMap k v1 -> HashMap k v2
map v1 -> v2
f = (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
forall k v1 v2. (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
mapWithKey ((v1 -> v2) -> k -> v1 -> v2
forall a b. a -> b -> a
const v1 -> v2
f)
{-# INLINE map #-}
traverseWithKey
:: Applicative f
=> (k -> v1 -> f v2)
-> HashMap k v1 -> f (HashMap k v2)
traverseWithKey :: forall (f :: * -> *) k v1 v2.
Applicative f =>
(k -> v1 -> f v2) -> HashMap k v1 -> f (HashMap k v2)
traverseWithKey k -> v1 -> f v2
f = HashMap k v1 -> f (HashMap k v2)
go
where
go :: HashMap k v1 -> f (HashMap k v2)
go HashMap k v1
Empty = HashMap k v2 -> f (HashMap k v2)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure HashMap k v2
forall k v. HashMap k v
Empty
go (Leaf Bitmap
h (L k
k v1
v)) = Bitmap -> Leaf k v2 -> HashMap k v2
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (Leaf k v2 -> HashMap k v2)
-> (v2 -> Leaf k v2) -> v2 -> HashMap k v2
forall b c a. (b -> c) -> (a -> b) -> a -> c
. k -> v2 -> Leaf k v2
forall k v. k -> v -> Leaf k v
L k
k (v2 -> HashMap k v2) -> f v2 -> f (HashMap k v2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> v1 -> f v2
f k
k v1
v
go (BitmapIndexed Bitmap
b Array (HashMap k v1)
ary) = Bitmap -> Array (HashMap k v2) -> HashMap k v2
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b (Array (HashMap k v2) -> HashMap k v2)
-> f (Array (HashMap k v2)) -> f (HashMap k v2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (HashMap k v1 -> f (HashMap k v2))
-> Array (HashMap k v1) -> f (Array (HashMap k v2))
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Array a -> f (Array b)
A.traverse HashMap k v1 -> f (HashMap k v2)
go Array (HashMap k v1)
ary
go (Full Array (HashMap k v1)
ary) = Array (HashMap k v2) -> HashMap k v2
forall k v. Array (HashMap k v) -> HashMap k v
Full (Array (HashMap k v2) -> HashMap k v2)
-> f (Array (HashMap k v2)) -> f (HashMap k v2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (HashMap k v1 -> f (HashMap k v2))
-> Array (HashMap k v1) -> f (Array (HashMap k v2))
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Array a -> f (Array b)
A.traverse HashMap k v1 -> f (HashMap k v2)
go Array (HashMap k v1)
ary
go (Collision Bitmap
h Array (Leaf k v1)
ary) =
Bitmap -> Array (Leaf k v2) -> HashMap k v2
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h (Array (Leaf k v2) -> HashMap k v2)
-> f (Array (Leaf k v2)) -> f (HashMap k v2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Leaf k v1 -> f (Leaf k v2))
-> Array (Leaf k v1) -> f (Array (Leaf k v2))
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Array a -> f (Array b)
A.traverse' (\ (L k
k v1
v) -> k -> v2 -> Leaf k v2
forall k v. k -> v -> Leaf k v
L k
k (v2 -> Leaf k v2) -> f v2 -> f (Leaf k v2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> v1 -> f v2
f k
k v1
v) Array (Leaf k v1)
ary
{-# INLINE traverseWithKey #-}
mapKeys :: (Eq k2, Hashable k2) => (k1 -> k2) -> HashMap k1 v -> HashMap k2 v
mapKeys :: forall k2 k1 v.
(Eq k2, Hashable k2) =>
(k1 -> k2) -> HashMap k1 v -> HashMap k2 v
mapKeys k1 -> k2
f = [(k2, v)] -> HashMap k2 v
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList ([(k2, v)] -> HashMap k2 v)
-> (HashMap k1 v -> [(k2, v)]) -> HashMap k1 v -> HashMap k2 v
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (k1 -> v -> [(k2, v)] -> [(k2, v)])
-> [(k2, v)] -> HashMap k1 v -> [(k2, v)]
forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey (\k1
k v
x [(k2, v)]
xs -> (k1 -> k2
f k1
k, v
x) (k2, v) -> [(k2, v)] -> [(k2, v)]
forall a. a -> [a] -> [a]
: [(k2, v)]
xs) []
difference :: (Eq k, Hashable k) => HashMap k v -> HashMap k w -> HashMap k v
difference :: forall k v w.
(Eq k, Hashable k) =>
HashMap k v -> HashMap k w -> HashMap k v
difference HashMap k v
a HashMap k w
b = (HashMap k v -> k -> v -> HashMap k v)
-> HashMap k v -> HashMap k v -> HashMap k v
forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' HashMap k v -> k -> v -> HashMap k v
go HashMap k v
forall k v. HashMap k v
empty HashMap k v
a
where
go :: HashMap k v -> k -> v -> HashMap k v
go HashMap k v
m k
k v
v = case k -> HashMap k w -> Maybe w
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k w
b of
Maybe w
Nothing -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k v
v HashMap k v
m
Maybe w
_ -> HashMap k v
m
{-# INLINABLE difference #-}
differenceWith :: (Eq k, Hashable k) => (v -> w -> Maybe v) -> HashMap k v -> HashMap k w -> HashMap k v
differenceWith :: forall k v w.
(Eq k, Hashable k) =>
(v -> w -> Maybe v) -> HashMap k v -> HashMap k w -> HashMap k v
differenceWith v -> w -> Maybe v
f HashMap k v
a HashMap k w
b = (HashMap k v -> k -> v -> HashMap k v)
-> HashMap k v -> HashMap k v -> HashMap k v
forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' HashMap k v -> k -> v -> HashMap k v
go HashMap k v
forall k v. HashMap k v
empty HashMap k v
a
where
go :: HashMap k v -> k -> v -> HashMap k v
go HashMap k v
m k
k v
v = case k -> HashMap k w -> Maybe w
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
lookup k
k HashMap k w
b of
Maybe w
Nothing -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k v
v HashMap k v
m
Just w
w -> HashMap k v -> (v -> HashMap k v) -> Maybe v -> HashMap k v
forall b a. b -> (a -> b) -> Maybe a -> b
maybe HashMap k v
m (\v
y -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k v
y HashMap k v
m) (v -> w -> Maybe v
f v
v w
w)
{-# INLINABLE differenceWith #-}
intersection :: Eq k => HashMap k v -> HashMap k w -> HashMap k v
intersection :: forall k v w. Eq k => HashMap k v -> HashMap k w -> HashMap k v
intersection = ((v -> w -> v) -> HashMap k v -> HashMap k w -> HashMap k v)
-> (v -> w -> v) -> HashMap k v -> HashMap k w -> HashMap k v
forall a. a -> a
Exts.inline (v -> w -> v) -> HashMap k v -> HashMap k w -> HashMap k v
forall k v1 v2 v3.
Eq k =>
(v1 -> v2 -> v3) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWith v -> w -> v
forall a b. a -> b -> a
const
{-# INLINABLE intersection #-}
intersectionWith :: Eq k => (v1 -> v2 -> v3) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWith :: forall k v1 v2 v3.
Eq k =>
(v1 -> v2 -> v3) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWith v1 -> v2 -> v3
f = ((k -> v1 -> v2 -> v3)
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> (k -> v1 -> v2 -> v3)
-> HashMap k v1
-> HashMap k v2
-> HashMap k v3
forall a. a -> a
Exts.inline (k -> v1 -> v2 -> v3)
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3
forall k v1 v2 v3.
Eq k =>
(k -> v1 -> v2 -> v3)
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey ((k -> v1 -> v2 -> v3)
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> (k -> v1 -> v2 -> v3)
-> HashMap k v1
-> HashMap k v2
-> HashMap k v3
forall a b. (a -> b) -> a -> b
$ (v1 -> v2 -> v3) -> k -> v1 -> v2 -> v3
forall a b. a -> b -> a
const v1 -> v2 -> v3
f
{-# INLINABLE intersectionWith #-}
intersectionWithKey :: Eq k => (k -> v1 -> v2 -> v3) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey :: forall k v1 v2 v3.
Eq k =>
(k -> v1 -> v2 -> v3)
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey k -> v1 -> v2 -> v3
f = (k -> v1 -> v2 -> (# v3 #))
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3
forall k v1 v2 v3.
Eq k =>
(k -> v1 -> v2 -> (# v3 #))
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey# ((k -> v1 -> v2 -> (# v3 #))
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> (k -> v1 -> v2 -> (# v3 #))
-> HashMap k v1
-> HashMap k v2
-> HashMap k v3
forall a b. (a -> b) -> a -> b
$ \k
k v1
v1 v2
v2 -> (# k -> v1 -> v2 -> v3
f k
k v1
v1 v2
v2 #)
{-# INLINABLE intersectionWithKey #-}
intersectionWithKey# :: Eq k => (k -> v1 -> v2 -> (# v3 #)) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey# :: forall k v1 v2 v3.
Eq k =>
(k -> v1 -> v2 -> (# v3 #))
-> HashMap k v1 -> HashMap k v2 -> HashMap k v3
intersectionWithKey# k -> v1 -> v2 -> (# v3 #)
f = Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go Int
0
where
go :: Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go !Int
_ HashMap k v1
_ HashMap k v2
Empty = HashMap k v3
forall k v. HashMap k v
Empty
go Int
_ HashMap k v1
Empty HashMap k v2
_ = HashMap k v3
forall k v. HashMap k v
Empty
go Int
s (Leaf Bitmap
h1 (L k
k1 v1
v1)) HashMap k v2
t2 =
((# #) -> HashMap k v3)
-> (v2 -> Int -> HashMap k v3)
-> Bitmap
-> k
-> Int
-> HashMap k v2
-> HashMap k v3
forall r k v.
Eq k =>
((# #) -> r)
-> (v -> Int -> r) -> Bitmap -> k -> Int -> HashMap k v -> r
lookupCont
(\(# #)
_ -> HashMap k v3
forall k v. HashMap k v
Empty)
(\v2
v Int
_ -> case k -> v1 -> v2 -> (# v3 #)
f k
k1 v1
v1 v2
v of (# v3
v' #) -> Bitmap -> Leaf k v3 -> HashMap k v3
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h1 (Leaf k v3 -> HashMap k v3) -> Leaf k v3 -> HashMap k v3
forall a b. (a -> b) -> a -> b
$ k -> v3 -> Leaf k v3
forall k v. k -> v -> Leaf k v
L k
k1 v3
v')
Bitmap
h1 k
k1 Int
s HashMap k v2
t2
go Int
s HashMap k v1
t1 (Leaf Bitmap
h2 (L k
k2 v2
v2)) =
((# #) -> HashMap k v3)
-> (v1 -> Int -> HashMap k v3)
-> Bitmap
-> k
-> Int
-> HashMap k v1
-> HashMap k v3
forall r k v.
Eq k =>
((# #) -> r)
-> (v -> Int -> r) -> Bitmap -> k -> Int -> HashMap k v -> r
lookupCont
(\(# #)
_ -> HashMap k v3
forall k v. HashMap k v
Empty)
(\v1
v Int
_ -> case k -> v1 -> v2 -> (# v3 #)
f k
k2 v1
v v2
v2 of (# v3
v' #) -> Bitmap -> Leaf k v3 -> HashMap k v3
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h2 (Leaf k v3 -> HashMap k v3) -> Leaf k v3 -> HashMap k v3
forall a b. (a -> b) -> a -> b
$ k -> v3 -> Leaf k v3
forall k v. k -> v -> Leaf k v
L k
k2 v3
v')
Bitmap
h2 k
k2 Int
s HashMap k v1
t1
go Int
_ (Collision Bitmap
h1 Array (Leaf k v1)
ls1) (Collision Bitmap
h2 Array (Leaf k v2)
ls2) = (k -> v1 -> v2 -> (# v3 #))
-> Bitmap
-> Bitmap
-> Array (Leaf k v1)
-> Array (Leaf k v2)
-> HashMap k v3
forall k v1 v2 v3.
Eq k =>
(k -> v1 -> v2 -> (# v3 #))
-> Bitmap
-> Bitmap
-> Array (Leaf k v1)
-> Array (Leaf k v2)
-> HashMap k v3
intersectionCollisions k -> v1 -> v2 -> (# v3 #)
f Bitmap
h1 Bitmap
h2 Array (Leaf k v1)
ls1 Array (Leaf k v2)
ls2
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v1)
ary1) (BitmapIndexed Bitmap
b2 Array (HashMap k v2)
ary2) =
(HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> Bitmap
-> Bitmap
-> Array (HashMap k v1)
-> Array (HashMap k v2)
-> HashMap k v3
forall k v1 v2 v3.
(HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> Bitmap
-> Bitmap
-> Array (HashMap k v1)
-> Array (HashMap k v2)
-> HashMap k v3
intersectionArrayBy (Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int -> Int
nextShift Int
s)) Bitmap
b1 Bitmap
b2 Array (HashMap k v1)
ary1 Array (HashMap k v2)
ary2
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v1)
ary1) (Full Array (HashMap k v2)
ary2) =
(HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> Bitmap
-> Bitmap
-> Array (HashMap k v1)
-> Array (HashMap k v2)
-> HashMap k v3
forall k v1 v2 v3.
(HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> Bitmap
-> Bitmap
-> Array (HashMap k v1)
-> Array (HashMap k v2)
-> HashMap k v3
intersectionArrayBy (Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int -> Int
nextShift Int
s)) Bitmap
b1 Bitmap
fullBitmap Array (HashMap k v1)
ary1 Array (HashMap k v2)
ary2
go Int
s (Full Array (HashMap k v1)
ary1) (BitmapIndexed Bitmap
b2 Array (HashMap k v2)
ary2) =
(HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> Bitmap
-> Bitmap
-> Array (HashMap k v1)
-> Array (HashMap k v2)
-> HashMap k v3
forall k v1 v2 v3.
(HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> Bitmap
-> Bitmap
-> Array (HashMap k v1)
-> Array (HashMap k v2)
-> HashMap k v3
intersectionArrayBy (Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int -> Int
nextShift Int
s)) Bitmap
fullBitmap Bitmap
b2 Array (HashMap k v1)
ary1 Array (HashMap k v2)
ary2
go Int
s (Full Array (HashMap k v1)
ary1) (Full Array (HashMap k v2)
ary2) =
(HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> Bitmap
-> Bitmap
-> Array (HashMap k v1)
-> Array (HashMap k v2)
-> HashMap k v3
forall k v1 v2 v3.
(HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> Bitmap
-> Bitmap
-> Array (HashMap k v1)
-> Array (HashMap k v2)
-> HashMap k v3
intersectionArrayBy (Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int -> Int
nextShift Int
s)) Bitmap
fullBitmap Bitmap
fullBitmap Array (HashMap k v1)
ary1 Array (HashMap k v2)
ary2
go Int
s (BitmapIndexed Bitmap
b1 Array (HashMap k v1)
ary1) t2 :: HashMap k v2
t2@(Collision Bitmap
h2 Array (Leaf k v2)
_ls2)
| Bitmap
b1 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m2 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 = HashMap k v3
forall k v. HashMap k v
Empty
| Bool
otherwise = Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int -> Int
nextShift Int
s) (Array (HashMap k v1) -> Int -> HashMap k v1
forall a. Array a -> Int -> a
A.index Array (HashMap k v1)
ary1 Int
i) HashMap k v2
t2
where
m2 :: Bitmap
m2 = Bitmap -> Int -> Bitmap
mask Bitmap
h2 Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b1 Bitmap
m2
go Int
s t1 :: HashMap k v1
t1@(Collision Bitmap
h1 Array (Leaf k v1)
_ls1) (BitmapIndexed Bitmap
b2 Array (HashMap k v2)
ary2)
| Bitmap
b2 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 = HashMap k v3
forall k v. HashMap k v
Empty
| Bool
otherwise = Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int -> Int
nextShift Int
s) HashMap k v1
t1 (Array (HashMap k v2) -> Int -> HashMap k v2
forall a. Array a -> Int -> a
A.index Array (HashMap k v2)
ary2 Int
i)
where
m1 :: Bitmap
m1 = Bitmap -> Int -> Bitmap
mask Bitmap
h1 Int
s
i :: Int
i = Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b2 Bitmap
m1
go Int
s (Full Array (HashMap k v1)
ary1) t2 :: HashMap k v2
t2@(Collision Bitmap
h2 Array (Leaf k v2)
_ls2) = Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int -> Int
nextShift Int
s) (Array (HashMap k v1) -> Int -> HashMap k v1
forall a. Array a -> Int -> a
A.index Array (HashMap k v1)
ary1 Int
i) HashMap k v2
t2
where
i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h2 Int
s
go Int
s t1 :: HashMap k v1
t1@(Collision Bitmap
h1 Array (Leaf k v1)
_ls1) (Full Array (HashMap k v2)
ary2) = Int -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
go (Int -> Int
nextShift Int
s) HashMap k v1
t1 (Array (HashMap k v2) -> Int -> HashMap k v2
forall a. Array a -> Int -> a
A.index Array (HashMap k v2)
ary2 Int
i)
where
i :: Int
i = Bitmap -> Int -> Int
index Bitmap
h1 Int
s
{-# INLINE intersectionWithKey# #-}
intersectionArrayBy ::
( HashMap k v1 ->
HashMap k v2 ->
HashMap k v3
) ->
Bitmap ->
Bitmap ->
A.Array (HashMap k v1) ->
A.Array (HashMap k v2) ->
HashMap k v3
intersectionArrayBy :: forall k v1 v2 v3.
(HashMap k v1 -> HashMap k v2 -> HashMap k v3)
-> Bitmap
-> Bitmap
-> Array (HashMap k v1)
-> Array (HashMap k v2)
-> HashMap k v3
intersectionArrayBy HashMap k v1 -> HashMap k v2 -> HashMap k v3
f !Bitmap
b1 !Bitmap
b2 !Array (HashMap k v1)
ary1 !Array (HashMap k v2)
ary2
| Bitmap
b1 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
b2 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 = HashMap k v3
forall k v. HashMap k v
Empty
| Bool
otherwise = (forall s. ST s (HashMap k v3)) -> HashMap k v3
forall a. (forall s. ST s a) -> a
runST ((forall s. ST s (HashMap k v3)) -> HashMap k v3)
-> (forall s. ST s (HashMap k v3)) -> HashMap k v3
forall a b. (a -> b) -> a -> b
$ do
MArray s (HashMap k v3)
mary <- Int -> ST s (MArray s (HashMap k v3))
forall s a. Int -> ST s (MArray s a)
A.new_ (Int -> ST s (MArray s (HashMap k v3)))
-> Int -> ST s (MArray s (HashMap k v3))
forall a b. (a -> b) -> a -> b
$ Bitmap -> Int
forall a. Bits a => a -> Int
popCount Bitmap
bIntersect
let go :: Int -> Int -> Int -> Bitmap -> Bitmap -> ST s (Int, Bitmap)
go !Int
i !Int
i1 !Int
i2 !Bitmap
b !Bitmap
bFinal
| Bitmap
b Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 = (Int, Bitmap) -> ST s (Int, Bitmap)
forall a. a -> ST s a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
i, Bitmap
bFinal)
| Bitmap -> Bool
testBit (Bitmap -> Bool) -> Bitmap -> Bool
forall a b. (a -> b) -> a -> b
$ Bitmap
b1 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
b2 = do
HashMap k v1
x1 <- Array (HashMap k v1) -> Int -> ST s (HashMap k v1)
forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap k v1)
ary1 Int
i1
HashMap k v2
x2 <- Array (HashMap k v2) -> Int -> ST s (HashMap k v2)
forall a s. Array a -> Int -> ST s a
A.indexM Array (HashMap k v2)
ary2 Int
i2
case HashMap k v1 -> HashMap k v2 -> HashMap k v3
f HashMap k v1
x1 HashMap k v2
x2 of
HashMap k v3
Empty -> Int -> Int -> Int -> Bitmap -> Bitmap -> ST s (Int, Bitmap)
go Int
i (Int
i1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) (Int
i2 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Bitmap
b' (Bitmap
bFinal Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap -> Bitmap
forall {a}. Bits a => a -> a
complement Bitmap
m)
HashMap k v3
_ -> do
MArray s (HashMap k v3) -> Int -> HashMap k v3 -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (HashMap k v3)
mary Int
i (HashMap k v3 -> ST s ()) -> HashMap k v3 -> ST s ()
forall a b. (a -> b) -> a -> b
$! HashMap k v1 -> HashMap k v2 -> HashMap k v3
f HashMap k v1
x1 HashMap k v2
x2
Int -> Int -> Int -> Bitmap -> Bitmap -> ST s (Int, Bitmap)
go (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) (Int
i1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) (Int
i2 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Bitmap
b' Bitmap
bFinal
| Bitmap -> Bool
testBit Bitmap
b1 = Int -> Int -> Int -> Bitmap -> Bitmap -> ST s (Int, Bitmap)
go Int
i (Int
i1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Int
i2 Bitmap
b' Bitmap
bFinal
| Bool
otherwise = Int -> Int -> Int -> Bitmap -> Bitmap -> ST s (Int, Bitmap)
go Int
i Int
i1 (Int
i2 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Bitmap
b' Bitmap
bFinal
where
m :: Bitmap
m = Bitmap
1 Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Bitmap -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros Bitmap
b
testBit :: Bitmap -> Bool
testBit Bitmap
x = Bitmap
x Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
m Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
/= Bitmap
0
b' :: Bitmap
b' = Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap -> Bitmap
forall {a}. Bits a => a -> a
complement Bitmap
m
(Int
len, Bitmap
bFinal) <- Int -> Int -> Int -> Bitmap -> Bitmap -> ST s (Int, Bitmap)
go Int
0 Int
0 Int
0 Bitmap
bCombined Bitmap
bIntersect
case Int
len of
Int
0 -> HashMap k v3 -> ST s (HashMap k v3)
forall a. a -> ST s a
forall (f :: * -> *) a. Applicative f => a -> f a
pure HashMap k v3
forall k v. HashMap k v
Empty
Int
1 -> do
HashMap k v3
l <- MArray s (HashMap k v3) -> Int -> ST s (HashMap k v3)
forall s a. MArray s a -> Int -> ST s a
A.read MArray s (HashMap k v3)
mary Int
0
if HashMap k v3 -> Bool
forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v3
l
then HashMap k v3 -> ST s (HashMap k v3)
forall a. a -> ST s a
forall (f :: * -> *) a. Applicative f => a -> f a
pure HashMap k v3
l
else Bitmap -> Array (HashMap k v3) -> HashMap k v3
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
bFinal (Array (HashMap k v3) -> HashMap k v3)
-> ST s (Array (HashMap k v3)) -> ST s (HashMap k v3)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (MArray s (HashMap k v3) -> ST s (Array (HashMap k v3))
forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze (MArray s (HashMap k v3) -> ST s (Array (HashMap k v3)))
-> ST s (MArray s (HashMap k v3)) -> ST s (Array (HashMap k v3))
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MArray s (HashMap k v3) -> Int -> ST s (MArray s (HashMap k v3))
forall s a. MArray s a -> Int -> ST s (MArray s a)
A.shrink MArray s (HashMap k v3)
mary Int
1)
Int
_ -> Bitmap -> Array (HashMap k v3) -> HashMap k v3
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
bitmapIndexedOrFull Bitmap
bFinal (Array (HashMap k v3) -> HashMap k v3)
-> ST s (Array (HashMap k v3)) -> ST s (HashMap k v3)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (MArray s (HashMap k v3) -> ST s (Array (HashMap k v3))
forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze (MArray s (HashMap k v3) -> ST s (Array (HashMap k v3)))
-> ST s (MArray s (HashMap k v3)) -> ST s (Array (HashMap k v3))
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MArray s (HashMap k v3) -> Int -> ST s (MArray s (HashMap k v3))
forall s a. MArray s a -> Int -> ST s (MArray s a)
A.shrink MArray s (HashMap k v3)
mary Int
len)
where
bCombined :: Bitmap
bCombined = Bitmap
b1 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.|. Bitmap
b2
bIntersect :: Bitmap
bIntersect = Bitmap
b1 Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
b2
{-# INLINE intersectionArrayBy #-}
intersectionCollisions :: Eq k => (k -> v1 -> v2 -> (# v3 #)) -> Hash -> Hash -> A.Array (Leaf k v1) -> A.Array (Leaf k v2) -> HashMap k v3
intersectionCollisions :: forall k v1 v2 v3.
Eq k =>
(k -> v1 -> v2 -> (# v3 #))
-> Bitmap
-> Bitmap
-> Array (Leaf k v1)
-> Array (Leaf k v2)
-> HashMap k v3
intersectionCollisions k -> v1 -> v2 -> (# v3 #)
f Bitmap
h1 Bitmap
h2 Array (Leaf k v1)
ary1 Array (Leaf k v2)
ary2
| Bitmap
h1 Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
h2 = (forall s. ST s (HashMap k v3)) -> HashMap k v3
forall a. (forall s. ST s a) -> a
runST ((forall s. ST s (HashMap k v3)) -> HashMap k v3)
-> (forall s. ST s (HashMap k v3)) -> HashMap k v3
forall a b. (a -> b) -> a -> b
$ do
MArray s (Leaf k v2)
mary2 <- Array (Leaf k v2) -> Int -> Int -> ST s (MArray s (Leaf k v2))
forall e s. Array e -> Int -> Int -> ST s (MArray s e)
A.thaw Array (Leaf k v2)
ary2 Int
0 (Int -> ST s (MArray s (Leaf k v2)))
-> Int -> ST s (MArray s (Leaf k v2))
forall a b. (a -> b) -> a -> b
$ Array (Leaf k v2) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v2)
ary2
MArray s (Leaf k v3)
mary <- Int -> ST s (MArray s (Leaf k v3))
forall s a. Int -> ST s (MArray s a)
A.new_ (Int -> ST s (MArray s (Leaf k v3)))
-> Int -> ST s (MArray s (Leaf k v3))
forall a b. (a -> b) -> a -> b
$ Int -> Int -> Int
forall a. Ord a => a -> a -> a
min (Array (Leaf k v1) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v1)
ary1) (Array (Leaf k v2) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v2)
ary2)
let go :: Int -> Int -> ST s Int
go Int
i Int
j
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Array (Leaf k v1) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v1)
ary1 Bool -> Bool -> Bool
|| Int
j Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= MArray s (Leaf k v2) -> Int
forall s a. MArray s a -> Int
A.lengthM MArray s (Leaf k v2)
mary2 = Int -> ST s Int
forall a. a -> ST s a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Int
j
| Bool
otherwise = do
L k
k1 v1
v1 <- Array (Leaf k v1) -> Int -> ST s (Leaf k v1)
forall a s. Array a -> Int -> ST s a
A.indexM Array (Leaf k v1)
ary1 Int
i
k -> Int -> MArray s (Leaf k v2) -> ST s (Maybe (Leaf k v2))
forall k s v.
Eq k =>
k -> Int -> MArray s (Leaf k v) -> ST s (Maybe (Leaf k v))
searchSwap k
k1 Int
j MArray s (Leaf k v2)
mary2 ST s (Maybe (Leaf k v2))
-> (Maybe (Leaf k v2) -> ST s Int) -> ST s Int
forall a b. ST s a -> (a -> ST s b) -> ST s b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
Just (L k
_k2 v2
v2) -> do
let !(# v3
v3 #) = k -> v1 -> v2 -> (# v3 #)
f k
k1 v1
v1 v2
v2
MArray s (Leaf k v3) -> Int -> Leaf k v3 -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v3)
mary Int
j (Leaf k v3 -> ST s ()) -> Leaf k v3 -> ST s ()
forall a b. (a -> b) -> a -> b
$ k -> v3 -> Leaf k v3
forall k v. k -> v -> Leaf k v
L k
k1 v3
v3
Int -> Int -> ST s Int
go (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) (Int
j Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
Maybe (Leaf k v2)
Nothing -> do
Int -> Int -> ST s Int
go (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Int
j
Int
len <- Int -> Int -> ST s Int
go Int
0 Int
0
case Int
len of
Int
0 -> HashMap k v3 -> ST s (HashMap k v3)
forall a. a -> ST s a
forall (f :: * -> *) a. Applicative f => a -> f a
pure HashMap k v3
forall k v. HashMap k v
Empty
Int
1 -> Bitmap -> Leaf k v3 -> HashMap k v3
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h1 (Leaf k v3 -> HashMap k v3)
-> ST s (Leaf k v3) -> ST s (HashMap k v3)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MArray s (Leaf k v3) -> Int -> ST s (Leaf k v3)
forall s a. MArray s a -> Int -> ST s a
A.read MArray s (Leaf k v3)
mary Int
0
Int
_ -> Bitmap -> Array (Leaf k v3) -> HashMap k v3
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h1 (Array (Leaf k v3) -> HashMap k v3)
-> ST s (Array (Leaf k v3)) -> ST s (HashMap k v3)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (MArray s (Leaf k v3) -> ST s (Array (Leaf k v3))
forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze (MArray s (Leaf k v3) -> ST s (Array (Leaf k v3)))
-> ST s (MArray s (Leaf k v3)) -> ST s (Array (Leaf k v3))
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MArray s (Leaf k v3) -> Int -> ST s (MArray s (Leaf k v3))
forall s a. MArray s a -> Int -> ST s (MArray s a)
A.shrink MArray s (Leaf k v3)
mary Int
len)
| Bool
otherwise = HashMap k v3
forall k v. HashMap k v
Empty
{-# INLINE intersectionCollisions #-}
searchSwap :: Eq k => k -> Int -> A.MArray s (Leaf k v) -> ST s (Maybe (Leaf k v))
searchSwap :: forall k s v.
Eq k =>
k -> Int -> MArray s (Leaf k v) -> ST s (Maybe (Leaf k v))
searchSwap k
toFind Int
start = Int -> k -> Int -> MArray s (Leaf k v) -> ST s (Maybe (Leaf k v))
forall {t} {s} {v}.
Eq t =>
Int -> t -> Int -> MArray s (Leaf t v) -> ST s (Maybe (Leaf t v))
go Int
start k
toFind Int
start
where
go :: Int -> t -> Int -> MArray s (Leaf t v) -> ST s (Maybe (Leaf t v))
go Int
i0 t
k Int
i MArray s (Leaf t v)
mary
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= MArray s (Leaf t v) -> Int
forall s a. MArray s a -> Int
A.lengthM MArray s (Leaf t v)
mary = Maybe (Leaf t v) -> ST s (Maybe (Leaf t v))
forall a. a -> ST s a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe (Leaf t v)
forall a. Maybe a
Nothing
| Bool
otherwise = do
l :: Leaf t v
l@(L t
k' v
_v) <- MArray s (Leaf t v) -> Int -> ST s (Leaf t v)
forall s a. MArray s a -> Int -> ST s a
A.read MArray s (Leaf t v)
mary Int
i
if t
k t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== t
k'
then do
MArray s (Leaf t v) -> Int -> Leaf t v -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf t v)
mary Int
i (Leaf t v -> ST s ()) -> ST s (Leaf t v) -> ST s ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MArray s (Leaf t v) -> Int -> ST s (Leaf t v)
forall s a. MArray s a -> Int -> ST s a
A.read MArray s (Leaf t v)
mary Int
i0
Maybe (Leaf t v) -> ST s (Maybe (Leaf t v))
forall a. a -> ST s a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe (Leaf t v) -> ST s (Maybe (Leaf t v)))
-> Maybe (Leaf t v) -> ST s (Maybe (Leaf t v))
forall a b. (a -> b) -> a -> b
$ Leaf t v -> Maybe (Leaf t v)
forall a. a -> Maybe a
Just Leaf t v
l
else Int -> t -> Int -> MArray s (Leaf t v) -> ST s (Maybe (Leaf t v))
go Int
i0 t
k (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) MArray s (Leaf t v)
mary
{-# INLINE searchSwap #-}
foldl' :: (a -> v -> a) -> a -> HashMap k v -> a
foldl' :: forall a v k. (a -> v -> a) -> a -> HashMap k v -> a
foldl' a -> v -> a
f = (a -> k -> v -> a) -> a -> HashMap k v -> a
forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' (\ a
z k
_ v
v -> a -> v -> a
f a
z v
v)
{-# INLINE foldl' #-}
foldr' :: (v -> a -> a) -> a -> HashMap k v -> a
foldr' :: forall v a k. (v -> a -> a) -> a -> HashMap k v -> a
foldr' v -> a -> a
f = (k -> v -> a -> a) -> a -> HashMap k v -> a
forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey' (\ k
_ v
v a
z -> v -> a -> a
f v
v a
z)
{-# INLINE foldr' #-}
foldlWithKey' :: (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' :: forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey' a -> k -> v -> a
f = a -> HashMap k v -> a
go
where
go :: a -> HashMap k v -> a
go !a
z HashMap k v
Empty = a
z
go a
z (Leaf Bitmap
_ (L k
k v
v)) = a -> k -> v -> a
f a
z k
k v
v
go a
z (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) = (a -> HashMap k v -> a) -> a -> Array (HashMap k v) -> a
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' a -> HashMap k v -> a
go a
z Array (HashMap k v)
ary
go a
z (Full Array (HashMap k v)
ary) = (a -> HashMap k v -> a) -> a -> Array (HashMap k v) -> a
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' a -> HashMap k v -> a
go a
z Array (HashMap k v)
ary
go a
z (Collision Bitmap
_ Array (Leaf k v)
ary) = (a -> Leaf k v -> a) -> a -> Array (Leaf k v) -> a
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' (\ a
z' (L k
k v
v) -> a -> k -> v -> a
f a
z' k
k v
v) a
z Array (Leaf k v)
ary
{-# INLINE foldlWithKey' #-}
foldrWithKey' :: (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey' :: forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey' k -> v -> a -> a
f = (HashMap k v -> a -> a) -> a -> HashMap k v -> a
forall a b c. (a -> b -> c) -> b -> a -> c
flip HashMap k v -> a -> a
go
where
go :: HashMap k v -> a -> a
go HashMap k v
Empty a
z = a
z
go (Leaf Bitmap
_ (L k
k v
v)) !a
z = k -> v -> a -> a
f k
k v
v a
z
go (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) !a
z = (HashMap k v -> a -> a) -> a -> Array (HashMap k v) -> a
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr' HashMap k v -> a -> a
go a
z Array (HashMap k v)
ary
go (Full Array (HashMap k v)
ary) !a
z = (HashMap k v -> a -> a) -> a -> Array (HashMap k v) -> a
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr' HashMap k v -> a -> a
go a
z Array (HashMap k v)
ary
go (Collision Bitmap
_ Array (Leaf k v)
ary) !a
z = (Leaf k v -> a -> a) -> a -> Array (Leaf k v) -> a
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr' (\ (L k
k v
v) a
z' -> k -> v -> a -> a
f k
k v
v a
z') a
z Array (Leaf k v)
ary
{-# INLINE foldrWithKey' #-}
foldr :: (v -> a -> a) -> a -> HashMap k v -> a
foldr :: forall v a k. (v -> a -> a) -> a -> HashMap k v -> a
foldr v -> a -> a
f = (k -> v -> a -> a) -> a -> HashMap k v -> a
forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey ((v -> a -> a) -> k -> v -> a -> a
forall a b. a -> b -> a
const v -> a -> a
f)
{-# INLINE foldr #-}
foldl :: (a -> v -> a) -> a -> HashMap k v -> a
foldl :: forall a v k. (a -> v -> a) -> a -> HashMap k v -> a
foldl a -> v -> a
f = (a -> k -> v -> a) -> a -> HashMap k v -> a
forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey (\a
a k
_k v
v -> a -> v -> a
f a
a v
v)
{-# INLINE foldl #-}
foldrWithKey :: (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey :: forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey k -> v -> a -> a
f = (HashMap k v -> a -> a) -> a -> HashMap k v -> a
forall a b c. (a -> b -> c) -> b -> a -> c
flip HashMap k v -> a -> a
go
where
go :: HashMap k v -> a -> a
go HashMap k v
Empty a
z = a
z
go (Leaf Bitmap
_ (L k
k v
v)) a
z = k -> v -> a -> a
f k
k v
v a
z
go (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) a
z = (HashMap k v -> a -> a) -> a -> Array (HashMap k v) -> a
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr HashMap k v -> a -> a
go a
z Array (HashMap k v)
ary
go (Full Array (HashMap k v)
ary) a
z = (HashMap k v -> a -> a) -> a -> Array (HashMap k v) -> a
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr HashMap k v -> a -> a
go a
z Array (HashMap k v)
ary
go (Collision Bitmap
_ Array (Leaf k v)
ary) a
z = (Leaf k v -> a -> a) -> a -> Array (Leaf k v) -> a
forall a b. (a -> b -> b) -> b -> Array a -> b
A.foldr (\ (L k
k v
v) a
z' -> k -> v -> a -> a
f k
k v
v a
z') a
z Array (Leaf k v)
ary
{-# INLINE foldrWithKey #-}
foldlWithKey :: (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey :: forall a k v. (a -> k -> v -> a) -> a -> HashMap k v -> a
foldlWithKey a -> k -> v -> a
f = a -> HashMap k v -> a
go
where
go :: a -> HashMap k v -> a
go a
z HashMap k v
Empty = a
z
go a
z (Leaf Bitmap
_ (L k
k v
v)) = a -> k -> v -> a
f a
z k
k v
v
go a
z (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) = (a -> HashMap k v -> a) -> a -> Array (HashMap k v) -> a
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl a -> HashMap k v -> a
go a
z Array (HashMap k v)
ary
go a
z (Full Array (HashMap k v)
ary) = (a -> HashMap k v -> a) -> a -> Array (HashMap k v) -> a
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl a -> HashMap k v -> a
go a
z Array (HashMap k v)
ary
go a
z (Collision Bitmap
_ Array (Leaf k v)
ary) = (a -> Leaf k v -> a) -> a -> Array (Leaf k v) -> a
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl (\ a
z' (L k
k v
v) -> a -> k -> v -> a
f a
z' k
k v
v) a
z Array (Leaf k v)
ary
{-# INLINE foldlWithKey #-}
foldMapWithKey :: Monoid m => (k -> v -> m) -> HashMap k v -> m
foldMapWithKey :: forall m k v. Monoid m => (k -> v -> m) -> HashMap k v -> m
foldMapWithKey k -> v -> m
f = HashMap k v -> m
go
where
go :: HashMap k v -> m
go HashMap k v
Empty = m
forall a. Monoid a => a
mempty
go (Leaf Bitmap
_ (L k
k v
v)) = k -> v -> m
f k
k v
v
go (BitmapIndexed Bitmap
_ Array (HashMap k v)
ary) = (HashMap k v -> m) -> Array (HashMap k v) -> m
forall m a. Monoid m => (a -> m) -> Array a -> m
A.foldMap HashMap k v -> m
go Array (HashMap k v)
ary
go (Full Array (HashMap k v)
ary) = (HashMap k v -> m) -> Array (HashMap k v) -> m
forall m a. Monoid m => (a -> m) -> Array a -> m
A.foldMap HashMap k v -> m
go Array (HashMap k v)
ary
go (Collision Bitmap
_ Array (Leaf k v)
ary) = (Leaf k v -> m) -> Array (Leaf k v) -> m
forall m a. Monoid m => (a -> m) -> Array a -> m
A.foldMap (\ (L k
k v
v) -> k -> v -> m
f k
k v
v) Array (Leaf k v)
ary
{-# INLINE foldMapWithKey #-}
mapMaybeWithKey :: (k -> v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybeWithKey :: forall k v1 v2.
(k -> v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybeWithKey k -> v1 -> Maybe v2
f = (HashMap k v1 -> Maybe (HashMap k v2))
-> (Leaf k v1 -> Maybe (Leaf k v2)) -> HashMap k v1 -> HashMap k v2
forall k v1 v2.
(HashMap k v1 -> Maybe (HashMap k v2))
-> (Leaf k v1 -> Maybe (Leaf k v2)) -> HashMap k v1 -> HashMap k v2
filterMapAux HashMap k v1 -> Maybe (HashMap k v2)
onLeaf Leaf k v1 -> Maybe (Leaf k v2)
onColl
where onLeaf :: HashMap k v1 -> Maybe (HashMap k v2)
onLeaf (Leaf Bitmap
h (L k
k v1
v)) | Just v2
v' <- k -> v1 -> Maybe v2
f k
k v1
v = HashMap k v2 -> Maybe (HashMap k v2)
forall a. a -> Maybe a
Just (Bitmap -> Leaf k v2 -> HashMap k v2
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h (k -> v2 -> Leaf k v2
forall k v. k -> v -> Leaf k v
L k
k v2
v'))
onLeaf HashMap k v1
_ = Maybe (HashMap k v2)
forall a. Maybe a
Nothing
onColl :: Leaf k v1 -> Maybe (Leaf k v2)
onColl (L k
k v1
v) | Just v2
v' <- k -> v1 -> Maybe v2
f k
k v1
v = Leaf k v2 -> Maybe (Leaf k v2)
forall a. a -> Maybe a
Just (k -> v2 -> Leaf k v2
forall k v. k -> v -> Leaf k v
L k
k v2
v')
| Bool
otherwise = Maybe (Leaf k v2)
forall a. Maybe a
Nothing
{-# INLINE mapMaybeWithKey #-}
mapMaybe :: (v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybe :: forall v1 v2 k. (v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybe v1 -> Maybe v2
f = (k -> v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
forall k v1 v2.
(k -> v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
mapMaybeWithKey ((v1 -> Maybe v2) -> k -> v1 -> Maybe v2
forall a b. a -> b -> a
const v1 -> Maybe v2
f)
{-# INLINE mapMaybe #-}
filterWithKey :: forall k v. (k -> v -> Bool) -> HashMap k v -> HashMap k v
filterWithKey :: forall k v. (k -> v -> Bool) -> HashMap k v -> HashMap k v
filterWithKey k -> v -> Bool
pred = (HashMap k v -> Maybe (HashMap k v))
-> (Leaf k v -> Maybe (Leaf k v)) -> HashMap k v -> HashMap k v
forall k v1 v2.
(HashMap k v1 -> Maybe (HashMap k v2))
-> (Leaf k v1 -> Maybe (Leaf k v2)) -> HashMap k v1 -> HashMap k v2
filterMapAux HashMap k v -> Maybe (HashMap k v)
onLeaf Leaf k v -> Maybe (Leaf k v)
onColl
where onLeaf :: HashMap k v -> Maybe (HashMap k v)
onLeaf t :: HashMap k v
t@(Leaf Bitmap
_ (L k
k v
v)) | k -> v -> Bool
pred k
k v
v = HashMap k v -> Maybe (HashMap k v)
forall a. a -> Maybe a
Just HashMap k v
t
onLeaf HashMap k v
_ = Maybe (HashMap k v)
forall a. Maybe a
Nothing
onColl :: Leaf k v -> Maybe (Leaf k v)
onColl el :: Leaf k v
el@(L k
k v
v) | k -> v -> Bool
pred k
k v
v = Leaf k v -> Maybe (Leaf k v)
forall a. a -> Maybe a
Just Leaf k v
el
onColl Leaf k v
_ = Maybe (Leaf k v)
forall a. Maybe a
Nothing
{-# INLINE filterWithKey #-}
filterMapAux :: forall k v1 v2
. (HashMap k v1 -> Maybe (HashMap k v2))
-> (Leaf k v1 -> Maybe (Leaf k v2))
-> HashMap k v1
-> HashMap k v2
filterMapAux :: forall k v1 v2.
(HashMap k v1 -> Maybe (HashMap k v2))
-> (Leaf k v1 -> Maybe (Leaf k v2)) -> HashMap k v1 -> HashMap k v2
filterMapAux HashMap k v1 -> Maybe (HashMap k v2)
onLeaf Leaf k v1 -> Maybe (Leaf k v2)
onColl = HashMap k v1 -> HashMap k v2
go
where
go :: HashMap k v1 -> HashMap k v2
go HashMap k v1
Empty = HashMap k v2
forall k v. HashMap k v
Empty
go t :: HashMap k v1
t@Leaf{}
| Just HashMap k v2
t' <- HashMap k v1 -> Maybe (HashMap k v2)
onLeaf HashMap k v1
t = HashMap k v2
t'
| Bool
otherwise = HashMap k v2
forall k v. HashMap k v
Empty
go (BitmapIndexed Bitmap
b Array (HashMap k v1)
ary) = Array (HashMap k v1) -> Bitmap -> HashMap k v2
filterA Array (HashMap k v1)
ary Bitmap
b
go (Full Array (HashMap k v1)
ary) = Array (HashMap k v1) -> Bitmap -> HashMap k v2
filterA Array (HashMap k v1)
ary Bitmap
fullBitmap
go (Collision Bitmap
h Array (Leaf k v1)
ary) = Array (Leaf k v1) -> Bitmap -> HashMap k v2
filterC Array (Leaf k v1)
ary Bitmap
h
filterA :: Array (HashMap k v1) -> Bitmap -> HashMap k v2
filterA Array (HashMap k v1)
ary0 Bitmap
b0 =
let !n :: Int
n = Array (HashMap k v1) -> Int
forall a. Array a -> Int
A.length Array (HashMap k v1)
ary0
in (forall s. ST s (HashMap k v2)) -> HashMap k v2
forall a. (forall s. ST s a) -> a
runST ((forall s. ST s (HashMap k v2)) -> HashMap k v2)
-> (forall s. ST s (HashMap k v2)) -> HashMap k v2
forall a b. (a -> b) -> a -> b
$ do
MArray s (HashMap k v2)
mary <- Int -> ST s (MArray s (HashMap k v2))
forall s a. Int -> ST s (MArray s a)
A.new_ Int
n
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Bitmap
-> Int
-> Int
-> Bitmap
-> Int
-> ST s (HashMap k v2)
forall s.
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Bitmap
-> Int
-> Int
-> Bitmap
-> Int
-> ST s (HashMap k v2)
step Array (HashMap k v1)
ary0 MArray s (HashMap k v2)
mary Bitmap
b0 Int
0 Int
0 Bitmap
1 Int
n
where
step :: A.Array (HashMap k v1) -> A.MArray s (HashMap k v2)
-> Bitmap -> Int -> Int -> Bitmap -> Int
-> ST s (HashMap k v2)
step :: forall s.
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Bitmap
-> Int
-> Int
-> Bitmap
-> Int
-> ST s (HashMap k v2)
step !Array (HashMap k v1)
ary !MArray s (HashMap k v2)
mary !Bitmap
b Int
i !Int
j !Bitmap
bi Int
n
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = case Int
j of
Int
0 -> HashMap k v2 -> ST s (HashMap k v2)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v2
forall k v. HashMap k v
Empty
Int
1 -> do
HashMap k v2
ch <- MArray s (HashMap k v2) -> Int -> ST s (HashMap k v2)
forall s a. MArray s a -> Int -> ST s a
A.read MArray s (HashMap k v2)
mary Int
0
case HashMap k v2
ch of
HashMap k v2
t | HashMap k v2 -> Bool
forall k a. HashMap k a -> Bool
isLeafOrCollision HashMap k v2
t -> HashMap k v2 -> ST s (HashMap k v2)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v2
t
HashMap k v2
_ -> Bitmap -> Array (HashMap k v2) -> HashMap k v2
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b (Array (HashMap k v2) -> HashMap k v2)
-> ST s (Array (HashMap k v2)) -> ST s (HashMap k v2)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (MArray s (HashMap k v2) -> ST s (Array (HashMap k v2))
forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze (MArray s (HashMap k v2) -> ST s (Array (HashMap k v2)))
-> ST s (MArray s (HashMap k v2)) -> ST s (Array (HashMap k v2))
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MArray s (HashMap k v2) -> Int -> ST s (MArray s (HashMap k v2))
forall s a. MArray s a -> Int -> ST s (MArray s a)
A.shrink MArray s (HashMap k v2)
mary Int
1)
Int
_ -> do
Array (HashMap k v2)
ary2 <- MArray s (HashMap k v2) -> ST s (Array (HashMap k v2))
forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze (MArray s (HashMap k v2) -> ST s (Array (HashMap k v2)))
-> ST s (MArray s (HashMap k v2)) -> ST s (Array (HashMap k v2))
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MArray s (HashMap k v2) -> Int -> ST s (MArray s (HashMap k v2))
forall s a. MArray s a -> Int -> ST s (MArray s a)
A.shrink MArray s (HashMap k v2)
mary Int
j
HashMap k v2 -> ST s (HashMap k v2)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v2 -> ST s (HashMap k v2))
-> HashMap k v2 -> ST s (HashMap k v2)
forall a b. (a -> b) -> a -> b
$! if Int
j Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
maxChildren
then Array (HashMap k v2) -> HashMap k v2
forall k v. Array (HashMap k v) -> HashMap k v
Full Array (HashMap k v2)
ary2
else Bitmap -> Array (HashMap k v2) -> HashMap k v2
forall k v. Bitmap -> Array (HashMap k v) -> HashMap k v
BitmapIndexed Bitmap
b Array (HashMap k v2)
ary2
| Bitmap
bi Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
b Bitmap -> Bitmap -> Bool
forall a. Eq a => a -> a -> Bool
== Bitmap
0 = Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Bitmap
-> Int
-> Int
-> Bitmap
-> Int
-> ST s (HashMap k v2)
forall s.
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Bitmap
-> Int
-> Int
-> Bitmap
-> Int
-> ST s (HashMap k v2)
step Array (HashMap k v1)
ary MArray s (HashMap k v2)
mary Bitmap
b Int
i Int
j (Bitmap
bi Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1) Int
n
| Bool
otherwise = case HashMap k v1 -> HashMap k v2
go (Array (HashMap k v1) -> Int -> HashMap k v1
forall a. Array a -> Int -> a
A.index Array (HashMap k v1)
ary Int
i) of
HashMap k v2
Empty -> Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Bitmap
-> Int
-> Int
-> Bitmap
-> Int
-> ST s (HashMap k v2)
forall s.
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Bitmap
-> Int
-> Int
-> Bitmap
-> Int
-> ST s (HashMap k v2)
step Array (HashMap k v1)
ary MArray s (HashMap k v2)
mary (Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap -> Bitmap
forall {a}. Bits a => a -> a
complement Bitmap
bi) (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
j
(Bitmap
bi Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1) Int
n
HashMap k v2
t -> do MArray s (HashMap k v2) -> Int -> HashMap k v2 -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (HashMap k v2)
mary Int
j HashMap k v2
t
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Bitmap
-> Int
-> Int
-> Bitmap
-> Int
-> ST s (HashMap k v2)
forall s.
Array (HashMap k v1)
-> MArray s (HashMap k v2)
-> Bitmap
-> Int
-> Int
-> Bitmap
-> Int
-> ST s (HashMap k v2)
step Array (HashMap k v1)
ary MArray s (HashMap k v2)
mary Bitmap
b (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
jInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Bitmap
bi Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
1) Int
n
filterC :: Array (Leaf k v1) -> Bitmap -> HashMap k v2
filterC Array (Leaf k v1)
ary0 Bitmap
h =
let !n :: Int
n = Array (Leaf k v1) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v1)
ary0
in (forall s. ST s (HashMap k v2)) -> HashMap k v2
forall a. (forall s. ST s a) -> a
runST ((forall s. ST s (HashMap k v2)) -> HashMap k v2)
-> (forall s. ST s (HashMap k v2)) -> HashMap k v2
forall a b. (a -> b) -> a -> b
$ do
MArray s (Leaf k v2)
mary <- Int -> ST s (MArray s (Leaf k v2))
forall s a. Int -> ST s (MArray s a)
A.new_ Int
n
Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
forall s.
Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
step Array (Leaf k v1)
ary0 MArray s (Leaf k v2)
mary Int
0 Int
0 Int
n
where
step :: A.Array (Leaf k v1) -> A.MArray s (Leaf k v2)
-> Int -> Int -> Int
-> ST s (HashMap k v2)
step :: forall s.
Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
step !Array (Leaf k v1)
ary !MArray s (Leaf k v2)
mary Int
i !Int
j Int
n
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = case Int
j of
Int
0 -> HashMap k v2 -> ST s (HashMap k v2)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return HashMap k v2
forall k v. HashMap k v
Empty
Int
1 -> do Leaf k v2
l <- MArray s (Leaf k v2) -> Int -> ST s (Leaf k v2)
forall s a. MArray s a -> Int -> ST s a
A.read MArray s (Leaf k v2)
mary Int
0
HashMap k v2 -> ST s (HashMap k v2)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v2 -> ST s (HashMap k v2))
-> HashMap k v2 -> ST s (HashMap k v2)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Leaf k v2 -> HashMap k v2
forall k v. Bitmap -> Leaf k v -> HashMap k v
Leaf Bitmap
h Leaf k v2
l
Int
_ | Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
j -> do Array (Leaf k v2)
ary2 <- MArray s (Leaf k v2) -> ST s (Array (Leaf k v2))
forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze MArray s (Leaf k v2)
mary
HashMap k v2 -> ST s (HashMap k v2)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v2 -> ST s (HashMap k v2))
-> HashMap k v2 -> ST s (HashMap k v2)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Array (Leaf k v2) -> HashMap k v2
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h Array (Leaf k v2)
ary2
| Bool
otherwise -> do Array (Leaf k v2)
ary2 <- MArray s (Leaf k v2) -> ST s (Array (Leaf k v2))
forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze (MArray s (Leaf k v2) -> ST s (Array (Leaf k v2)))
-> ST s (MArray s (Leaf k v2)) -> ST s (Array (Leaf k v2))
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< MArray s (Leaf k v2) -> Int -> ST s (MArray s (Leaf k v2))
forall s a. MArray s a -> Int -> ST s (MArray s a)
A.shrink MArray s (Leaf k v2)
mary Int
j
HashMap k v2 -> ST s (HashMap k v2)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (HashMap k v2 -> ST s (HashMap k v2))
-> HashMap k v2 -> ST s (HashMap k v2)
forall a b. (a -> b) -> a -> b
$! Bitmap -> Array (Leaf k v2) -> HashMap k v2
forall k v. Bitmap -> Array (Leaf k v) -> HashMap k v
Collision Bitmap
h Array (Leaf k v2)
ary2
| Just Leaf k v2
el <- Leaf k v1 -> Maybe (Leaf k v2)
onColl (Leaf k v1 -> Maybe (Leaf k v2)) -> Leaf k v1 -> Maybe (Leaf k v2)
forall a b. (a -> b) -> a -> b
$! Array (Leaf k v1) -> Int -> Leaf k v1
forall a. Array a -> Int -> a
A.index Array (Leaf k v1)
ary Int
i
= MArray s (Leaf k v2) -> Int -> Leaf k v2 -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v2)
mary Int
j Leaf k v2
el ST s () -> ST s (HashMap k v2) -> ST s (HashMap k v2)
forall a b. ST s a -> ST s b -> ST s b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
forall s.
Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
step Array (Leaf k v1)
ary MArray s (Leaf k v2)
mary (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
jInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
n
| Bool
otherwise = Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
forall s.
Array (Leaf k v1)
-> MArray s (Leaf k v2) -> Int -> Int -> Int -> ST s (HashMap k v2)
step Array (Leaf k v1)
ary MArray s (Leaf k v2)
mary (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
j Int
n
{-# INLINE filterMapAux #-}
filter :: (v -> Bool) -> HashMap k v -> HashMap k v
filter :: forall v k. (v -> Bool) -> HashMap k v -> HashMap k v
filter v -> Bool
p = (k -> v -> Bool) -> HashMap k v -> HashMap k v
forall k v. (k -> v -> Bool) -> HashMap k v -> HashMap k v
filterWithKey (\k
_ v
v -> v -> Bool
p v
v)
{-# INLINE filter #-}
keys :: HashMap k v -> [k]
keys :: forall k v. HashMap k v -> [k]
keys = ((k, v) -> k) -> [(k, v)] -> [k]
forall a b. (a -> b) -> [a] -> [b]
List.map (k, v) -> k
forall a b. (a, b) -> a
fst ([(k, v)] -> [k])
-> (HashMap k v -> [(k, v)]) -> HashMap k v -> [k]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. HashMap k v -> [(k, v)]
forall k v. HashMap k v -> [(k, v)]
toList
{-# INLINE keys #-}
elems :: HashMap k v -> [v]
elems :: forall k a. HashMap k a -> [a]
elems = ((k, v) -> v) -> [(k, v)] -> [v]
forall a b. (a -> b) -> [a] -> [b]
List.map (k, v) -> v
forall a b. (a, b) -> b
snd ([(k, v)] -> [v])
-> (HashMap k v -> [(k, v)]) -> HashMap k v -> [v]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. HashMap k v -> [(k, v)]
forall k v. HashMap k v -> [(k, v)]
toList
{-# INLINE elems #-}
toList :: HashMap k v -> [(k, v)]
toList :: forall k v. HashMap k v -> [(k, v)]
toList HashMap k v
t = (forall b. ((k, v) -> b -> b) -> b -> b) -> [(k, v)]
forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
Exts.build (\ (k, v) -> b -> b
c b
z -> (k -> v -> b -> b) -> b -> HashMap k v -> b
forall k v a. (k -> v -> a -> a) -> a -> HashMap k v -> a
foldrWithKey (((k, v) -> b -> b) -> k -> v -> b -> b
forall a b c. ((a, b) -> c) -> a -> b -> c
curry (k, v) -> b -> b
c) b
z HashMap k v
t)
{-# INLINE toList #-}
fromList :: (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList :: forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList = (HashMap k v -> (k, v) -> HashMap k v)
-> HashMap k v -> [(k, v)] -> HashMap k v
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' (\ HashMap k v
m (k
k, v
v) -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
unsafeInsert k
k v
v HashMap k v
m) HashMap k v
forall k v. HashMap k v
empty
{-# INLINABLE fromList #-}
fromListWith :: (Eq k, Hashable k) => (v -> v -> v) -> [(k, v)] -> HashMap k v
fromListWith :: forall k v.
(Eq k, Hashable k) =>
(v -> v -> v) -> [(k, v)] -> HashMap k v
fromListWith v -> v -> v
f = (HashMap k v -> (k, v) -> HashMap k v)
-> HashMap k v -> [(k, v)] -> HashMap k v
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' (\ HashMap k v
m (k
k, v
v) -> (v -> v -> v) -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
(v -> v -> v) -> k -> v -> HashMap k v -> HashMap k v
unsafeInsertWith v -> v -> v
f k
k v
v HashMap k v
m) HashMap k v
forall k v. HashMap k v
empty
{-# INLINE fromListWith #-}
fromListWithKey :: (Eq k, Hashable k) => (k -> v -> v -> v) -> [(k, v)] -> HashMap k v
fromListWithKey :: forall k v.
(Eq k, Hashable k) =>
(k -> v -> v -> v) -> [(k, v)] -> HashMap k v
fromListWithKey k -> v -> v -> v
f = (HashMap k v -> (k, v) -> HashMap k v)
-> HashMap k v -> [(k, v)] -> HashMap k v
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' (\ HashMap k v
m (k
k, v
v) -> (k -> v -> v -> (# v #)) -> k -> v -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
(k -> v -> v -> (# v #)) -> k -> v -> HashMap k v -> HashMap k v
unsafeInsertWithKey (\k
k' v
a v
b -> (# k -> v -> v -> v
f k
k' v
a v
b #)) k
k v
v HashMap k v
m) HashMap k v
forall k v. HashMap k v
empty
{-# INLINE fromListWithKey #-}
lookupInArrayCont ::
forall rep (r :: TYPE rep) k v.
Eq k => ((# #) -> r) -> (v -> Int -> r) -> k -> A.Array (Leaf k v) -> r
lookupInArrayCont :: forall r k v.
Eq k =>
((# #) -> r) -> (v -> Int -> r) -> k -> Array (Leaf k v) -> r
lookupInArrayCont (# #) -> r
absent v -> Int -> r
present k
k0 Array (Leaf k v)
ary0 = k -> Array (Leaf k v) -> Int -> Int -> r
Eq k => k -> Array (Leaf k v) -> Int -> Int -> r
go k
k0 Array (Leaf k v)
ary0 Int
0 (Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary0)
where
go :: Eq k => k -> A.Array (Leaf k v) -> Int -> Int -> r
go :: Eq k => k -> Array (Leaf k v) -> Int -> Int -> r
go !k
k !Array (Leaf k v)
ary !Int
i !Int
n
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = (# #) -> r
absent (# #)
| Bool
otherwise = case Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
ary Int
i of
(L k
kx v
v)
| k
k k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
kx -> v -> Int -> r
present v
v Int
i
| Bool
otherwise -> k -> Array (Leaf k v) -> Int -> Int -> r
Eq k => k -> Array (Leaf k v) -> Int -> Int -> r
go k
k Array (Leaf k v)
ary (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
n
{-# INLINE lookupInArrayCont #-}
indexOf :: Eq k => k -> A.Array (Leaf k v) -> Maybe Int
indexOf :: forall k v. Eq k => k -> Array (Leaf k v) -> Maybe Int
indexOf k
k0 Array (Leaf k v)
ary0 = k -> Array (Leaf k v) -> Int -> Int -> Maybe Int
forall {t} {v}.
Eq t =>
t -> Array (Leaf t v) -> Int -> Int -> Maybe Int
go k
k0 Array (Leaf k v)
ary0 Int
0 (Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary0)
where
go :: t -> Array (Leaf t v) -> Int -> Int -> Maybe Int
go !t
k !Array (Leaf t v)
ary !Int
i !Int
n
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = Maybe Int
forall a. Maybe a
Nothing
| Bool
otherwise = case Array (Leaf t v) -> Int -> Leaf t v
forall a. Array a -> Int -> a
A.index Array (Leaf t v)
ary Int
i of
(L t
kx v
_)
| t
k t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== t
kx -> Int -> Maybe Int
forall a. a -> Maybe a
Just Int
i
| Bool
otherwise -> t -> Array (Leaf t v) -> Int -> Int -> Maybe Int
go t
k Array (Leaf t v)
ary (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
n
{-# INLINABLE indexOf #-}
updateWith# :: Eq k => (v -> (# v #)) -> k -> A.Array (Leaf k v) -> A.Array (Leaf k v)
updateWith# :: forall k v.
Eq k =>
(v -> (# v #)) -> k -> Array (Leaf k v) -> Array (Leaf k v)
updateWith# v -> (# v #)
f k
k0 Array (Leaf k v)
ary0 = k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k0 Array (Leaf k v)
ary0 Int
0 (Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary0)
where
go :: k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go !k
k !Array (Leaf k v)
ary !Int
i !Int
n
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = Array (Leaf k v)
ary
| Bool
otherwise = case Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
ary Int
i of
(L k
kx v
y) | k
k k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
kx -> case v -> (# v #)
f v
y of
(# v
y' #)
| v -> v -> Bool
forall a. a -> a -> Bool
ptrEq v
y v
y' -> Array (Leaf k v)
ary
| Bool
otherwise -> Array (Leaf k v) -> Int -> Leaf k v -> Array (Leaf k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (Leaf k v)
ary Int
i (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
y')
| Bool
otherwise -> k -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k Array (Leaf k v)
ary (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
n
{-# INLINABLE updateWith# #-}
updateOrSnocWith :: Eq k => (v -> v -> (# v #)) -> k -> v -> A.Array (Leaf k v)
-> A.Array (Leaf k v)
updateOrSnocWith :: forall k v.
Eq k =>
(v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWith v -> v -> (# v #)
f = (k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWithKey ((v -> v -> (# v #)) -> k -> v -> v -> (# v #)
forall a b. a -> b -> a
const v -> v -> (# v #)
f)
{-# INLINABLE updateOrSnocWith #-}
updateOrSnocWithKey :: Eq k => (k -> v -> v -> (# v #)) -> k -> v -> A.Array (Leaf k v)
-> A.Array (Leaf k v)
updateOrSnocWithKey :: forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> k -> v -> Array (Leaf k v) -> Array (Leaf k v)
updateOrSnocWithKey k -> v -> v -> (# v #)
f k
k0 v
v0 Array (Leaf k v)
ary0 = k -> v -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k0 v
v0 Array (Leaf k v)
ary0 Int
0 (Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary0)
where
go :: k -> v -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go !k
k v
v !Array (Leaf k v)
ary !Int
i !Int
n
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = Array (Leaf k v) -> Leaf k v -> Array (Leaf k v)
forall a. Array a -> a -> Array a
A.snoc Array (Leaf k v)
ary (Leaf k v -> Array (Leaf k v)) -> Leaf k v -> Array (Leaf k v)
forall a b. (a -> b) -> a -> b
$ k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
v
| L k
kx v
y <- Array (Leaf k v) -> Int -> Leaf k v
forall a. Array a -> Int -> a
A.index Array (Leaf k v)
ary Int
i
, k
k k -> k -> Bool
forall a. Eq a => a -> a -> Bool
== k
kx
, (# v
v2 #) <- k -> v -> v -> (# v #)
f k
k v
v v
y
= Array (Leaf k v) -> Int -> Leaf k v -> Array (Leaf k v)
forall e. Array e -> Int -> e -> Array e
A.update Array (Leaf k v)
ary Int
i (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
v2)
| Bool
otherwise
= k -> v -> Array (Leaf k v) -> Int -> Int -> Array (Leaf k v)
go k
k v
v Array (Leaf k v)
ary (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
n
{-# INLINABLE updateOrSnocWithKey #-}
updateOrConcatWithKey :: Eq k => (k -> v -> v -> (# v #)) -> A.Array (Leaf k v) -> A.Array (Leaf k v) -> A.Array (Leaf k v)
updateOrConcatWithKey :: forall k v.
Eq k =>
(k -> v -> v -> (# v #))
-> Array (Leaf k v) -> Array (Leaf k v) -> Array (Leaf k v)
updateOrConcatWithKey k -> v -> v -> (# v #)
f Array (Leaf k v)
ary1 Array (Leaf k v)
ary2 = (forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v)
forall e. (forall s. ST s (MArray s e)) -> Array e
A.run ((forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v))
-> (forall s. ST s (MArray s (Leaf k v))) -> Array (Leaf k v)
forall a b. (a -> b) -> a -> b
$ do
let indices :: Array (Maybe Int)
indices = (Leaf k v -> Maybe Int) -> Array (Leaf k v) -> Array (Maybe Int)
forall a b. (a -> b) -> Array a -> Array b
A.map' (\(L k
k v
_) -> k -> Array (Leaf k v) -> Maybe Int
forall k v. Eq k => k -> Array (Leaf k v) -> Maybe Int
indexOf k
k Array (Leaf k v)
ary1) Array (Leaf k v)
ary2
let nOnly2 :: Int
nOnly2 = (Int -> Maybe Int -> Int) -> Int -> Array (Maybe Int) -> Int
forall b a. (b -> a -> b) -> b -> Array a -> b
A.foldl' (\Int
n -> Int -> (Int -> Int) -> Maybe Int -> Int
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int -> Int -> Int
forall a b. a -> b -> a
const Int
n)) Int
0 Array (Maybe Int)
indices
let n1 :: Int
n1 = Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary1
let n2 :: Int
n2 = Array (Leaf k v) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v)
ary2
MArray s (Leaf k v)
mary <- Int -> ST s (MArray s (Leaf k v))
forall s a. Int -> ST s (MArray s a)
A.new_ (Int
n1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
nOnly2)
Array (Leaf k v)
-> Int -> MArray s (Leaf k v) -> Int -> Int -> ST s ()
forall e s. Array e -> Int -> MArray s e -> Int -> Int -> ST s ()
A.copy Array (Leaf k v)
ary1 Int
0 MArray s (Leaf k v)
mary Int
0 Int
n1
let go :: Int -> Int -> ST s ()
go !Int
iEnd !Int
i2
| Int
i2 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n2 = () -> ST s ()
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Bool
otherwise = case Array (Maybe Int) -> Int -> Maybe Int
forall a. Array a -> Int -> a
A.index Array (Maybe Int)
indices Int
i2 of
Just Int
i1 -> do
L k
k v
v1 <- Array (Leaf k v) -> Int -> ST s (Leaf k v)
forall a s. Array a -> Int -> ST s a
A.indexM Array (Leaf k v)
ary1 Int
i1
L k
_ v
v2 <- Array (Leaf k v) -> Int -> ST s (Leaf k v)
forall a s. Array a -> Int -> ST s a
A.indexM Array (Leaf k v)
ary2 Int
i2
case k -> v -> v -> (# v #)
f k
k v
v1 v
v2 of (# v
v3 #) -> MArray s (Leaf k v) -> Int -> Leaf k v -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v)
mary Int
i1 (k -> v -> Leaf k v
forall k v. k -> v -> Leaf k v
L k
k v
v3)
Int -> Int -> ST s ()
go Int
iEnd (Int
i2Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
Maybe Int
Nothing -> do
MArray s (Leaf k v) -> Int -> Leaf k v -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s (Leaf k v)
mary Int
iEnd (Leaf k v -> ST s ()) -> ST s (Leaf k v) -> ST s ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Array (Leaf k v) -> Int -> ST s (Leaf k v)
forall a s. Array a -> Int -> ST s a
A.indexM Array (Leaf k v)
ary2 Int
i2
Int -> Int -> ST s ()
go (Int
iEndInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
i2Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
Int -> Int -> ST s ()
go Int
n1 Int
0
MArray s (Leaf k v) -> ST s (MArray s (Leaf k v))
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return MArray s (Leaf k v)
mary
{-# INLINABLE updateOrConcatWithKey #-}
subsetArray :: Eq k => (v1 -> v2 -> Bool) -> A.Array (Leaf k v1) -> A.Array (Leaf k v2) -> Bool
subsetArray :: forall k v1 v2.
Eq k =>
(v1 -> v2 -> Bool)
-> Array (Leaf k v1) -> Array (Leaf k v2) -> Bool
subsetArray v1 -> v2 -> Bool
cmpV Array (Leaf k v1)
ary1 Array (Leaf k v2)
ary2 = Array (Leaf k v1) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v1)
ary1 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Array (Leaf k v2) -> Int
forall a. Array a -> Int
A.length Array (Leaf k v2)
ary2 Bool -> Bool -> Bool
&& (Leaf k v1 -> Bool) -> Array (Leaf k v1) -> Bool
forall a. (a -> Bool) -> Array a -> Bool
A.all Leaf k v1 -> Bool
inAry2 Array (Leaf k v1)
ary1
where
inAry2 :: Leaf k v1 -> Bool
inAry2 (L k
k1 v1
v1) = ((# #) -> Bool)
-> (v2 -> Int -> Bool) -> k -> Array (Leaf k v2) -> Bool
forall r k v.
Eq k =>
((# #) -> r) -> (v -> Int -> r) -> k -> Array (Leaf k v) -> r
lookupInArrayCont (\(# #)
_ -> Bool
False) (\v2
v2 Int
_ -> v1 -> v2 -> Bool
cmpV v1
v1 v2
v2) k
k1 Array (Leaf k v2)
ary2
{-# INLINE inAry2 #-}
update32 :: A.Array e -> Int -> e -> A.Array e
update32 :: forall e. Array e -> Int -> e -> Array e
update32 Array e
ary Int
idx e
b = (forall s. ST s (Array e)) -> Array e
forall a. (forall s. ST s a) -> a
runST (Array e -> Int -> e -> ST s (Array e)
forall e s. Array e -> Int -> e -> ST s (Array e)
update32M Array e
ary Int
idx e
b)
{-# INLINE update32 #-}
update32M :: A.Array e -> Int -> e -> ST s (A.Array e)
update32M :: forall e s. Array e -> Int -> e -> ST s (Array e)
update32M Array e
ary Int
idx e
b = do
MArray s e
mary <- Array e -> ST s (MArray s e)
forall e s. Array e -> ST s (MArray s e)
clone Array e
ary
MArray s e -> Int -> e -> ST s ()
forall s a. MArray s a -> Int -> a -> ST s ()
A.write MArray s e
mary Int
idx e
b
MArray s e -> ST s (Array e)
forall s a. MArray s a -> ST s (Array a)
A.unsafeFreeze MArray s e
mary
{-# INLINE update32M #-}
update32With' :: A.Array e -> Int -> (e -> e) -> A.Array e
update32With' :: forall e. Array e -> Int -> (e -> e) -> Array e
update32With' Array e
ary Int
idx e -> e
f
| (# e
x #) <- Array e -> Int -> (# e #)
forall a. Array a -> Int -> (# a #)
A.index# Array e
ary Int
idx
= Array e -> Int -> e -> Array e
forall e. Array e -> Int -> e -> Array e
update32 Array e
ary Int
idx (e -> Array e) -> e -> Array e
forall a b. (a -> b) -> a -> b
$! e -> e
f e
x
{-# INLINE update32With' #-}
clone :: A.Array e -> ST s (A.MArray s e)
clone :: forall e s. Array e -> ST s (MArray s e)
clone Array e
ary =
Array e -> Int -> Int -> ST s (MArray s e)
forall e s. Array e -> Int -> Int -> ST s (MArray s e)
A.thaw Array e
ary Int
0 (Int
2Int -> Int -> Int
forall a b. (Num a, Integral b) => a -> b -> a
^Int
bitsPerSubkey)
bitsPerSubkey :: Int
bitsPerSubkey :: Int
bitsPerSubkey = Int
5
maxChildren :: Int
maxChildren :: Int
maxChildren = Int
1 Int -> Int -> Int
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
bitsPerSubkey
subkeyMask :: Word
subkeyMask :: Bitmap
subkeyMask = Bitmap
1 Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Int
bitsPerSubkey Bitmap -> Bitmap -> Bitmap
forall a. Num a => a -> a -> a
- Bitmap
1
index :: Hash -> Shift -> Int
index :: Bitmap -> Int -> Int
index Bitmap
w Int
s = Bitmap -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Bitmap -> Int) -> Bitmap -> Int
forall a b. (a -> b) -> a -> b
$ Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
unsafeShiftR Bitmap
w Int
s Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. Bitmap
subkeyMask
{-# INLINE index #-}
mask :: Hash -> Shift -> Bitmap
mask :: Bitmap -> Int -> Bitmap
mask Bitmap
w Int
s = Bitmap
1 Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
`unsafeShiftL` Bitmap -> Int -> Int
index Bitmap
w Int
s
{-# INLINE mask #-}
sparseIndex
:: Bitmap
-> Bitmap
-> Int
sparseIndex :: Bitmap -> Bitmap -> Int
sparseIndex Bitmap
b Bitmap
m = Bitmap -> Int
forall a. Bits a => a -> Int
popCount (Bitmap
b Bitmap -> Bitmap -> Bitmap
forall a. Bits a => a -> a -> a
.&. (Bitmap
m Bitmap -> Bitmap -> Bitmap
forall a. Num a => a -> a -> a
- Bitmap
1))
{-# INLINE sparseIndex #-}
fullBitmap :: Bitmap
fullBitmap :: Bitmap
fullBitmap = Bitmap -> Bitmap
forall {a}. Bits a => a -> a
complement (Bitmap -> Bitmap
forall {a}. Bits a => a -> a
complement Bitmap
0 Bitmap -> Int -> Bitmap
forall a. Bits a => a -> Int -> a
`shiftL` Int
maxChildren)
{-# INLINE fullBitmap #-}
nextShift :: Shift -> Shift
nextShift :: Int -> Int
nextShift Int
s = Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
bitsPerSubkey
{-# INLINE nextShift #-}
ptrEq :: a -> a -> Bool
ptrEq :: forall a. a -> a -> Bool
ptrEq a
x a
y = Int# -> Bool
Exts.isTrue# (a -> a -> Int#
forall a b. a -> b -> Int#
Exts.reallyUnsafePtrEquality# a
x a
y Int# -> Int# -> Int#
==# Int#
1#)
{-# INLINE ptrEq #-}
instance (Eq k, Hashable k) => Exts.IsList (HashMap k v) where
type Item (HashMap k v) = (k, v)
fromList :: [Item (HashMap k v)] -> HashMap k v
fromList = [(k, v)] -> HashMap k v
[Item (HashMap k v)] -> HashMap k v
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
fromList
toList :: HashMap k v -> [Item (HashMap k v)]
toList = HashMap k v -> [(k, v)]
HashMap k v -> [Item (HashMap k v)]
forall k v. HashMap k v -> [(k, v)]
toList