{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE Safe #-}
{-# LANGUAGE TypeOperators #-}
module Data.Functor.Contravariant.Decide (
Decide(..)
, gdecide
, decided
, gdecided
) where
import Control.Applicative.Backwards
import Control.Monad.Trans.Identity
import Control.Monad.Trans.Maybe
import qualified Control.Monad.Trans.RWS.Lazy as Lazy
import qualified Control.Monad.Trans.RWS.Strict as Strict
import Control.Monad.Trans.Reader
import qualified Control.Monad.Trans.State.Lazy as Lazy
import qualified Control.Monad.Trans.State.Strict as Strict
import qualified Control.Monad.Trans.Writer.Lazy as Lazy
import qualified Control.Monad.Trans.Writer.Strict as Strict
import Data.Functor.Apply
import Data.Functor.Compose
import Data.Functor.Contravariant
import Data.Functor.Contravariant.Divise
import Data.Functor.Product
import Data.Functor.Reverse
import Data.Monoid (Alt(..))
import Data.Proxy
import GHC.Generics
#if !(MIN_VERSION_transformers(0,6,0))
import Control.Arrow
import Control.Monad.Trans.List
import Data.Either
#endif
#if defined(MIN_VERSION_contravariant)
import Data.Functor.Contravariant.Divisible
#endif
#ifdef MIN_VERSION_StateVar
import Data.StateVar
#endif
class Contravariant f => Decide f where
decide :: (a -> Either b c) -> f b -> f c -> f a
gdecide :: (Generic1 f, Decide (Rep1 f)) => (a -> Either b c) -> f b -> f c -> f a
gdecide :: forall (f :: * -> *) a b c.
(Generic1 f, Decide (Rep1 f)) =>
(a -> Either b c) -> f b -> f c -> f a
gdecide a -> Either b c
f f b
fb f c
fc = Rep1 f a -> f a
forall a. Rep1 f a -> f a
forall k (f :: k -> *) (a :: k). Generic1 f => Rep1 f a -> f a
to1 (Rep1 f a -> f a) -> Rep1 f a -> f a
forall a b. (a -> b) -> a -> b
$ (a -> Either b c) -> Rep1 f b -> Rep1 f c -> Rep1 f a
forall a b c. (a -> Either b c) -> Rep1 f b -> Rep1 f c -> Rep1 f a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide a -> Either b c
f (f b -> Rep1 f b
forall a. f a -> Rep1 f a
forall k (f :: k -> *) (a :: k). Generic1 f => f a -> Rep1 f a
from1 f b
fb) (f c -> Rep1 f c
forall a. f a -> Rep1 f a
forall k (f :: k -> *) (a :: k). Generic1 f => f a -> Rep1 f a
from1 f c
fc)
decided :: Decide f => f b -> f c -> f (Either b c)
decided :: forall (f :: * -> *) b c. Decide f => f b -> f c -> f (Either b c)
decided = (Either b c -> Either b c) -> f b -> f c -> f (Either b c)
forall a b c. (a -> Either b c) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide Either b c -> Either b c
forall a. a -> a
id
gdecided :: (Generic1 f, Decide (Rep1 f)) => f b -> f c -> f (Either b c)
gdecided :: forall (f :: * -> *) b c.
(Generic1 f, Decide (Rep1 f)) =>
f b -> f c -> f (Either b c)
gdecided f b
fb f c
fc = (Either b c -> Either b c) -> f b -> f c -> f (Either b c)
forall (f :: * -> *) a b c.
(Generic1 f, Decide (Rep1 f)) =>
(a -> Either b c) -> f b -> f c -> f a
gdecide Either b c -> Either b c
forall a. a -> a
id f b
fb f c
fc
#if defined(MIN_VERSION_contravariant)
instance Decidable f => Decide (WrappedDivisible f) where
decide :: forall a b c.
(a -> Either b c)
-> WrappedDivisible f b
-> WrappedDivisible f c
-> WrappedDivisible f a
decide a -> Either b c
f (WrapDivisible f b
x) (WrapDivisible f c
y) = f a -> WrappedDivisible f a
forall (f :: * -> *) a. f a -> WrappedDivisible f a
WrapDivisible ((a -> Either b c) -> f b -> f c -> f a
forall a b c. (a -> Either b c) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose a -> Either b c
f f b
x f c
y)
#endif
instance Decide Comparison where
decide :: forall a b c.
(a -> Either b c) -> Comparison b -> Comparison c -> Comparison a
decide a -> Either b c
f (Comparison b -> b -> Ordering
g) (Comparison c -> c -> Ordering
h) = (a -> a -> Ordering) -> Comparison a
forall a. (a -> a -> Ordering) -> Comparison a
Comparison ((a -> a -> Ordering) -> Comparison a)
-> (a -> a -> Ordering) -> Comparison a
forall a b. (a -> b) -> a -> b
$ \a
a a
b -> case a -> Either b c
f a
a of
Left b
c -> case a -> Either b c
f a
b of
Left b
d -> b -> b -> Ordering
g b
c b
d
Right{} -> Ordering
LT
Right c
c -> case a -> Either b c
f a
b of
Left{} -> Ordering
GT
Right c
d -> c -> c -> Ordering
h c
c c
d
instance Decide Equivalence where
decide :: forall a b c.
(a -> Either b c)
-> Equivalence b -> Equivalence c -> Equivalence a
decide a -> Either b c
f (Equivalence b -> b -> Bool
g) (Equivalence c -> c -> Bool
h) = (a -> a -> Bool) -> Equivalence a
forall a. (a -> a -> Bool) -> Equivalence a
Equivalence ((a -> a -> Bool) -> Equivalence a)
-> (a -> a -> Bool) -> Equivalence a
forall a b. (a -> b) -> a -> b
$ \a
a a
b -> case a -> Either b c
f a
a of
Left b
c -> case a -> Either b c
f a
b of
Left b
d -> b -> b -> Bool
g b
c b
d
Right{} -> Bool
False
Right c
c -> case a -> Either b c
f a
b of
Left{} -> Bool
False
Right c
d -> c -> c -> Bool
h c
c c
d
instance Decide Predicate where
decide :: forall a b c.
(a -> Either b c) -> Predicate b -> Predicate c -> Predicate a
decide a -> Either b c
f (Predicate b -> Bool
g) (Predicate c -> Bool
h) = (a -> Bool) -> Predicate a
forall a. (a -> Bool) -> Predicate a
Predicate ((a -> Bool) -> Predicate a) -> (a -> Bool) -> Predicate a
forall a b. (a -> b) -> a -> b
$ (b -> Bool) -> (c -> Bool) -> Either b c -> Bool
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either b -> Bool
g c -> Bool
h (Either b c -> Bool) -> (a -> Either b c) -> a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Either b c
f
instance Decide (Op r) where
decide :: forall a b c. (a -> Either b c) -> Op r b -> Op r c -> Op r a
decide a -> Either b c
f (Op b -> r
g) (Op c -> r
h) = (a -> r) -> Op r a
forall a b. (b -> a) -> Op a b
Op ((a -> r) -> Op r a) -> (a -> r) -> Op r a
forall a b. (a -> b) -> a -> b
$ (b -> r) -> (c -> r) -> Either b c -> r
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either b -> r
g c -> r
h (Either b c -> r) -> (a -> Either b c) -> a -> r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Either b c
f
instance Decide f => Decide (Alt f) where
decide :: forall a b c. (a -> Either b c) -> Alt f b -> Alt f c -> Alt f a
decide a -> Either b c
f (Alt f b
l) (Alt f c
r) = f a -> Alt f a
forall {k} (f :: k -> *) (a :: k). f a -> Alt f a
Alt (f a -> Alt f a) -> f a -> Alt f a
forall a b. (a -> b) -> a -> b
$ (a -> Either b c) -> f b -> f c -> f a
forall a b c. (a -> Either b c) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide a -> Either b c
f f b
l f c
r
instance Decide U1 where
decide :: forall a b c. (a -> Either b c) -> U1 b -> U1 c -> U1 a
decide a -> Either b c
_ U1 b
U1 U1 c
U1 = U1 a
forall k (p :: k). U1 p
U1
instance Decide V1 where decide :: forall a b c. (a -> Either b c) -> V1 b -> V1 c -> V1 a
decide a -> Either b c
_ V1 b
x = case V1 b
x of {}
instance Decide f => Decide (Rec1 f) where
decide :: forall a b c. (a -> Either b c) -> Rec1 f b -> Rec1 f c -> Rec1 f a
decide a -> Either b c
f (Rec1 f b
l) (Rec1 f c
r) = f a -> Rec1 f a
forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 (f a -> Rec1 f a) -> f a -> Rec1 f a
forall a b. (a -> b) -> a -> b
$ (a -> Either b c) -> f b -> f c -> f a
forall a b c. (a -> Either b c) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide a -> Either b c
f f b
l f c
r
instance Decide f => Decide (M1 i c f) where
decide :: forall a b c.
(a -> Either b c) -> M1 i c f b -> M1 i c f c -> M1 i c f a
decide a -> Either b c
f (M1 f b
l) (M1 f c
r) = f a -> M1 i c f a
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 (f a -> M1 i c f a) -> f a -> M1 i c f a
forall a b. (a -> b) -> a -> b
$ (a -> Either b c) -> f b -> f c -> f a
forall a b c. (a -> Either b c) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide a -> Either b c
f f b
l f c
r
instance (Decide f, Decide g) => Decide (f :*: g) where
decide :: forall a b c.
(a -> Either b c) -> (:*:) f g b -> (:*:) f g c -> (:*:) f g a
decide a -> Either b c
f (f b
l1 :*: g b
r1) (f c
l2 :*: g c
r2) = (a -> Either b c) -> f b -> f c -> f a
forall a b c. (a -> Either b c) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide a -> Either b c
f f b
l1 f c
l2 f a -> g a -> (:*:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: (a -> Either b c) -> g b -> g c -> g a
forall a b c. (a -> Either b c) -> g b -> g c -> g a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide a -> Either b c
f g b
r1 g c
r2
instance (Apply f, Decide g) => Decide (f :.: g) where
decide :: forall a b c.
(a -> Either b c) -> (:.:) f g b -> (:.:) f g c -> (:.:) f g a
decide a -> Either b c
f (Comp1 f (g b)
l) (Comp1 f (g c)
r) = f (g a) -> (:.:) f g a
forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 ((g b -> g c -> g a) -> f (g b) -> f (g c) -> f (g a)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Apply f =>
(a -> b -> c) -> f a -> f b -> f c
liftF2 ((a -> Either b c) -> g b -> g c -> g a
forall a b c. (a -> Either b c) -> g b -> g c -> g a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide a -> Either b c
f) f (g b)
l f (g c)
r)
instance Decide f => Decide (Backwards f) where
decide :: forall a b c.
(a -> Either b c)
-> Backwards f b -> Backwards f c -> Backwards f a
decide a -> Either b c
f (Backwards f b
l) (Backwards f c
r) = f a -> Backwards f a
forall {k} (f :: k -> *) (a :: k). f a -> Backwards f a
Backwards (f a -> Backwards f a) -> f a -> Backwards f a
forall a b. (a -> b) -> a -> b
$ (a -> Either b c) -> f b -> f c -> f a
forall a b c. (a -> Either b c) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide a -> Either b c
f f b
l f c
r
instance Decide f => Decide (IdentityT f) where
decide :: forall a b c.
(a -> Either b c)
-> IdentityT f b -> IdentityT f c -> IdentityT f a
decide a -> Either b c
f (IdentityT f b
l) (IdentityT f c
r) = f a -> IdentityT f a
forall {k} (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT (f a -> IdentityT f a) -> f a -> IdentityT f a
forall a b. (a -> b) -> a -> b
$ (a -> Either b c) -> f b -> f c -> f a
forall a b c. (a -> Either b c) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide a -> Either b c
f f b
l f c
r
instance Decide m => Decide (ReaderT r m) where
decide :: forall a b c.
(a -> Either b c)
-> ReaderT r m b -> ReaderT r m c -> ReaderT r m a
decide a -> Either b c
abc (ReaderT r -> m b
rmb) (ReaderT r -> m c
rmc) = (r -> m a) -> ReaderT r m a
forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT ((r -> m a) -> ReaderT r m a) -> (r -> m a) -> ReaderT r m a
forall a b. (a -> b) -> a -> b
$ \r
r -> (a -> Either b c) -> m b -> m c -> m a
forall a b c. (a -> Either b c) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide a -> Either b c
abc (r -> m b
rmb r
r) (r -> m c
rmc r
r)
instance Decide m => Decide (Lazy.RWST r w s m) where
decide :: forall a b c.
(a -> Either b c)
-> RWST r w s m b -> RWST r w s m c -> RWST r w s m a
decide a -> Either b c
abc (Lazy.RWST r -> s -> m (b, s, w)
rsmb) (Lazy.RWST r -> s -> m (c, s, w)
rsmc) = (r -> s -> m (a, s, w)) -> RWST r w s m a
forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Lazy.RWST ((r -> s -> m (a, s, w)) -> RWST r w s m a)
-> (r -> s -> m (a, s, w)) -> RWST r w s m a
forall a b. (a -> b) -> a -> b
$ \r
r s
s ->
((a, s, w) -> Either (b, s, w) (c, s, w))
-> m (b, s, w) -> m (c, s, w) -> m (a, s, w)
forall a b c. (a -> Either b c) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide (\ ~(a
a, s
s', w
w) -> (b -> Either (b, s, w) (c, s, w))
-> (c -> Either (b, s, w) (c, s, w))
-> Either b c
-> Either (b, s, w) (c, s, w)
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either ((b, s, w) -> Either (b, s, w) (c, s, w)
forall a b. a -> Either a b
Left ((b, s, w) -> Either (b, s, w) (c, s, w))
-> (b -> (b, s, w)) -> b -> Either (b, s, w) (c, s, w)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> w -> b -> (b, s, w)
forall s w a. s -> w -> a -> (a, s, w)
betuple3 s
s' w
w)
((c, s, w) -> Either (b, s, w) (c, s, w)
forall a b. b -> Either a b
Right ((c, s, w) -> Either (b, s, w) (c, s, w))
-> (c -> (c, s, w)) -> c -> Either (b, s, w) (c, s, w)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> w -> c -> (c, s, w)
forall s w a. s -> w -> a -> (a, s, w)
betuple3 s
s' w
w)
(a -> Either b c
abc a
a))
(r -> s -> m (b, s, w)
rsmb r
r s
s) (r -> s -> m (c, s, w)
rsmc r
r s
s)
instance Decide m => Decide (Strict.RWST r w s m) where
decide :: forall a b c.
(a -> Either b c)
-> RWST r w s m b -> RWST r w s m c -> RWST r w s m a
decide a -> Either b c
abc (Strict.RWST r -> s -> m (b, s, w)
rsmb) (Strict.RWST r -> s -> m (c, s, w)
rsmc) = (r -> s -> m (a, s, w)) -> RWST r w s m a
forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Strict.RWST ((r -> s -> m (a, s, w)) -> RWST r w s m a)
-> (r -> s -> m (a, s, w)) -> RWST r w s m a
forall a b. (a -> b) -> a -> b
$ \r
r s
s ->
((a, s, w) -> Either (b, s, w) (c, s, w))
-> m (b, s, w) -> m (c, s, w) -> m (a, s, w)
forall a b c. (a -> Either b c) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide (\(a
a, s
s', w
w) -> (b -> Either (b, s, w) (c, s, w))
-> (c -> Either (b, s, w) (c, s, w))
-> Either b c
-> Either (b, s, w) (c, s, w)
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either ((b, s, w) -> Either (b, s, w) (c, s, w)
forall a b. a -> Either a b
Left ((b, s, w) -> Either (b, s, w) (c, s, w))
-> (b -> (b, s, w)) -> b -> Either (b, s, w) (c, s, w)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> w -> b -> (b, s, w)
forall s w a. s -> w -> a -> (a, s, w)
betuple3 s
s' w
w)
((c, s, w) -> Either (b, s, w) (c, s, w)
forall a b. b -> Either a b
Right ((c, s, w) -> Either (b, s, w) (c, s, w))
-> (c -> (c, s, w)) -> c -> Either (b, s, w) (c, s, w)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> w -> c -> (c, s, w)
forall s w a. s -> w -> a -> (a, s, w)
betuple3 s
s' w
w)
(a -> Either b c
abc a
a))
(r -> s -> m (b, s, w)
rsmb r
r s
s) (r -> s -> m (c, s, w)
rsmc r
r s
s)
#if !(MIN_VERSION_transformers(0,6,0))
instance Divise m => Decide (ListT m) where
decide f (ListT l) (ListT r) = ListT $ divise ((lefts &&& rights) . map f) l r
#endif
instance Divise m => Decide (MaybeT m) where
decide :: forall a b c.
(a -> Either b c) -> MaybeT m b -> MaybeT m c -> MaybeT m a
decide a -> Either b c
f (MaybeT m (Maybe b)
l) (MaybeT m (Maybe c)
r) = m (Maybe a) -> MaybeT m a
forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT (m (Maybe a) -> MaybeT m a) -> m (Maybe a) -> MaybeT m a
forall a b. (a -> b) -> a -> b
$
(Maybe a -> (Maybe b, Maybe c))
-> m (Maybe b) -> m (Maybe c) -> m (Maybe a)
forall a b c. (a -> (b, c)) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Divise f =>
(a -> (b, c)) -> f b -> f c -> f a
divise ( (Maybe b, Maybe c)
-> (a -> (Maybe b, Maybe c)) -> Maybe a -> (Maybe b, Maybe c)
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (Maybe b
forall a. Maybe a
Nothing, Maybe c
forall a. Maybe a
Nothing)
((b -> (Maybe b, Maybe c))
-> (c -> (Maybe b, Maybe c)) -> Either b c -> (Maybe b, Maybe c)
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (\b
b -> (b -> Maybe b
forall a. a -> Maybe a
Just b
b, Maybe c
forall a. Maybe a
Nothing))
(\c
c -> (Maybe b
forall a. Maybe a
Nothing, c -> Maybe c
forall a. a -> Maybe a
Just c
c)) (Either b c -> (Maybe b, Maybe c))
-> (a -> Either b c) -> a -> (Maybe b, Maybe c)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Either b c
f)
) m (Maybe b)
l m (Maybe c)
r
instance Decide m => Decide (Lazy.StateT s m) where
decide :: forall a b c.
(a -> Either b c) -> StateT s m b -> StateT s m c -> StateT s m a
decide a -> Either b c
f (Lazy.StateT s -> m (b, s)
l) (Lazy.StateT s -> m (c, s)
r) = (s -> m (a, s)) -> StateT s m a
forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Lazy.StateT ((s -> m (a, s)) -> StateT s m a)
-> (s -> m (a, s)) -> StateT s m a
forall a b. (a -> b) -> a -> b
$ \s
s ->
((a, s) -> Either (b, s) (c, s))
-> m (b, s) -> m (c, s) -> m (a, s)
forall a b c. (a -> Either b c) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide (\ ~(a
a, s
s') -> (b -> Either (b, s) (c, s))
-> (c -> Either (b, s) (c, s))
-> Either b c
-> Either (b, s) (c, s)
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either ((b, s) -> Either (b, s) (c, s)
forall a b. a -> Either a b
Left ((b, s) -> Either (b, s) (c, s))
-> (b -> (b, s)) -> b -> Either (b, s) (c, s)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> b -> (b, s)
forall s a. s -> a -> (a, s)
betuple s
s') ((c, s) -> Either (b, s) (c, s)
forall a b. b -> Either a b
Right ((c, s) -> Either (b, s) (c, s))
-> (c -> (c, s)) -> c -> Either (b, s) (c, s)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> c -> (c, s)
forall s a. s -> a -> (a, s)
betuple s
s') (a -> Either b c
f a
a))
(s -> m (b, s)
l s
s) (s -> m (c, s)
r s
s)
instance Decide m => Decide (Strict.StateT s m) where
decide :: forall a b c.
(a -> Either b c) -> StateT s m b -> StateT s m c -> StateT s m a
decide a -> Either b c
f (Strict.StateT s -> m (b, s)
l) (Strict.StateT s -> m (c, s)
r) = (s -> m (a, s)) -> StateT s m a
forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Strict.StateT ((s -> m (a, s)) -> StateT s m a)
-> (s -> m (a, s)) -> StateT s m a
forall a b. (a -> b) -> a -> b
$ \s
s ->
((a, s) -> Either (b, s) (c, s))
-> m (b, s) -> m (c, s) -> m (a, s)
forall a b c. (a -> Either b c) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide (\(a
a, s
s') -> (b -> Either (b, s) (c, s))
-> (c -> Either (b, s) (c, s))
-> Either b c
-> Either (b, s) (c, s)
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either ((b, s) -> Either (b, s) (c, s)
forall a b. a -> Either a b
Left ((b, s) -> Either (b, s) (c, s))
-> (b -> (b, s)) -> b -> Either (b, s) (c, s)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> b -> (b, s)
forall s a. s -> a -> (a, s)
betuple s
s') ((c, s) -> Either (b, s) (c, s)
forall a b. b -> Either a b
Right ((c, s) -> Either (b, s) (c, s))
-> (c -> (c, s)) -> c -> Either (b, s) (c, s)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> c -> (c, s)
forall s a. s -> a -> (a, s)
betuple s
s') (a -> Either b c
f a
a))
(s -> m (b, s)
l s
s) (s -> m (c, s)
r s
s)
instance Decide m => Decide (Lazy.WriterT w m) where
decide :: forall a b c.
(a -> Either b c)
-> WriterT w m b -> WriterT w m c -> WriterT w m a
decide a -> Either b c
f (Lazy.WriterT m (b, w)
l) (Lazy.WriterT m (c, w)
r) = m (a, w) -> WriterT w m a
forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Lazy.WriterT (m (a, w) -> WriterT w m a) -> m (a, w) -> WriterT w m a
forall a b. (a -> b) -> a -> b
$
((a, w) -> Either (b, w) (c, w))
-> m (b, w) -> m (c, w) -> m (a, w)
forall a b c. (a -> Either b c) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide (\ ~(a
a, w
s') -> (b -> Either (b, w) (c, w))
-> (c -> Either (b, w) (c, w))
-> Either b c
-> Either (b, w) (c, w)
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either ((b, w) -> Either (b, w) (c, w)
forall a b. a -> Either a b
Left ((b, w) -> Either (b, w) (c, w))
-> (b -> (b, w)) -> b -> Either (b, w) (c, w)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. w -> b -> (b, w)
forall s a. s -> a -> (a, s)
betuple w
s') ((c, w) -> Either (b, w) (c, w)
forall a b. b -> Either a b
Right ((c, w) -> Either (b, w) (c, w))
-> (c -> (c, w)) -> c -> Either (b, w) (c, w)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. w -> c -> (c, w)
forall s a. s -> a -> (a, s)
betuple w
s') (a -> Either b c
f a
a)) m (b, w)
l m (c, w)
r
instance Decide m => Decide (Strict.WriterT w m) where
decide :: forall a b c.
(a -> Either b c)
-> WriterT w m b -> WriterT w m c -> WriterT w m a
decide a -> Either b c
f (Strict.WriterT m (b, w)
l) (Strict.WriterT m (c, w)
r) = m (a, w) -> WriterT w m a
forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Strict.WriterT (m (a, w) -> WriterT w m a) -> m (a, w) -> WriterT w m a
forall a b. (a -> b) -> a -> b
$
((a, w) -> Either (b, w) (c, w))
-> m (b, w) -> m (c, w) -> m (a, w)
forall a b c. (a -> Either b c) -> m b -> m c -> m a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide (\(a
a, w
s') -> (b -> Either (b, w) (c, w))
-> (c -> Either (b, w) (c, w))
-> Either b c
-> Either (b, w) (c, w)
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either ((b, w) -> Either (b, w) (c, w)
forall a b. a -> Either a b
Left ((b, w) -> Either (b, w) (c, w))
-> (b -> (b, w)) -> b -> Either (b, w) (c, w)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. w -> b -> (b, w)
forall s a. s -> a -> (a, s)
betuple w
s') ((c, w) -> Either (b, w) (c, w)
forall a b. b -> Either a b
Right ((c, w) -> Either (b, w) (c, w))
-> (c -> (c, w)) -> c -> Either (b, w) (c, w)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. w -> c -> (c, w)
forall s a. s -> a -> (a, s)
betuple w
s') (a -> Either b c
f a
a)) m (b, w)
l m (c, w)
r
instance (Apply f, Decide g) => Decide (Compose f g) where
decide :: forall a b c.
(a -> Either b c)
-> Compose f g b -> Compose f g c -> Compose f g a
decide a -> Either b c
f (Compose f (g b)
l) (Compose f (g c)
r) = f (g a) -> Compose f g a
forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose ((g b -> g c -> g a) -> f (g b) -> f (g c) -> f (g a)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Apply f =>
(a -> b -> c) -> f a -> f b -> f c
liftF2 ((a -> Either b c) -> g b -> g c -> g a
forall a b c. (a -> Either b c) -> g b -> g c -> g a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide a -> Either b c
f) f (g b)
l f (g c)
r)
instance (Decide f, Decide g) => Decide (Product f g) where
decide :: forall a b c.
(a -> Either b c)
-> Product f g b -> Product f g c -> Product f g a
decide a -> Either b c
f (Pair f b
l1 g b
r1) (Pair f c
l2 g c
r2) = f a -> g a -> Product f g a
forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair ((a -> Either b c) -> f b -> f c -> f a
forall a b c. (a -> Either b c) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide a -> Either b c
f f b
l1 f c
l2) ((a -> Either b c) -> g b -> g c -> g a
forall a b c. (a -> Either b c) -> g b -> g c -> g a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide a -> Either b c
f g b
r1 g c
r2)
instance Decide f => Decide (Reverse f) where
decide :: forall a b c.
(a -> Either b c) -> Reverse f b -> Reverse f c -> Reverse f a
decide a -> Either b c
f (Reverse f b
l) (Reverse f c
r) = f a -> Reverse f a
forall {k} (f :: k -> *) (a :: k). f a -> Reverse f a
Reverse (f a -> Reverse f a) -> f a -> Reverse f a
forall a b. (a -> b) -> a -> b
$ (a -> Either b c) -> f b -> f c -> f a
forall a b c. (a -> Either b c) -> f b -> f c -> f a
forall (f :: * -> *) a b c.
Decide f =>
(a -> Either b c) -> f b -> f c -> f a
decide a -> Either b c
f f b
l f c
r
betuple :: s -> a -> (a, s)
betuple :: forall s a. s -> a -> (a, s)
betuple s
s a
a = (a
a, s
s)
betuple3 :: s -> w -> a -> (a, s, w)
betuple3 :: forall s w a. s -> w -> a -> (a, s, w)
betuple3 s
s w
w a
a = (a
a, s
s, w
w)
instance Decide Proxy where
decide :: forall a b c. (a -> Either b c) -> Proxy b -> Proxy c -> Proxy a
decide a -> Either b c
_ Proxy b
Proxy Proxy c
Proxy = Proxy a
forall {k} (t :: k). Proxy t
Proxy
#ifdef MIN_VERSION_StateVar
instance Decide SettableStateVar where
decide k (SettableStateVar l) (SettableStateVar r) = SettableStateVar $ \ a -> case k a of
Left b -> l b
Right c -> r c
#endif