{-# LANGUAGE CPP #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE Safe #-}
module Data.Profunctor.Monad where
import Control.Comonad
import Data.Bifunctor.Tannen
import Data.Bifunctor.Product
import Data.Bifunctor.Sum
import Data.Profunctor.Types
class ProfunctorFunctor t where
promap :: Profunctor p => (p :-> q) -> t p :-> t q
instance Functor f => ProfunctorFunctor (Tannen f) where
promap :: forall (p :: * -> * -> *) (q :: * -> * -> *).
Profunctor p =>
(p :-> q) -> Tannen f p :-> Tannen f q
promap p :-> q
f (Tannen f (p a b)
g) = f (q a b) -> Tannen f q a b
forall {k} {k1} {k2} (f :: k -> *) (p :: k1 -> k2 -> k) (a :: k1)
(b :: k2).
f (p a b) -> Tannen f p a b
Tannen ((p a b -> q a b) -> f (p a b) -> f (q a b)
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap p a b -> q a b
p :-> q
f f (p a b)
g)
instance ProfunctorFunctor (Product p) where
promap :: forall (p :: * -> * -> *) (q :: * -> * -> *).
Profunctor p =>
(p :-> q) -> Product p p :-> Product p q
promap p :-> q
f (Pair p a b
p p a b
q) = p a b -> q a b -> Product p q a b
forall {k} {k1} (f :: k -> k1 -> *) (g :: k -> k1 -> *) (a :: k)
(b :: k1).
f a b -> g a b -> Product f g a b
Pair p a b
p (p a b -> q a b
p :-> q
f p a b
q)
instance ProfunctorFunctor (Sum p) where
promap :: forall (p :: * -> * -> *) (q :: * -> * -> *).
Profunctor p =>
(p :-> q) -> Sum p p :-> Sum p q
promap p :-> q
_ (L2 p a b
p) = p a b -> Sum p q a b
forall {k} {k1} (p :: k -> k1 -> *) (q :: k -> k1 -> *) (a :: k)
(b :: k1).
p a b -> Sum p q a b
L2 p a b
p
promap p :-> q
f (R2 p a b
q) = q a b -> Sum p q a b
forall {k} {k1} (p :: k -> k1 -> *) (q :: k -> k1 -> *) (a :: k)
(b :: k1).
q a b -> Sum p q a b
R2 (p a b -> q a b
p :-> q
f p a b
q)
class ProfunctorFunctor t => ProfunctorMonad t where
proreturn :: Profunctor p => p :-> t p
projoin :: Profunctor p => t (t p) :-> t p
#if __GLASGOW_HASKELL__ < 710
instance (Functor f, Monad f) => ProfunctorMonad (Tannen f) where
#else
instance Monad f => ProfunctorMonad (Tannen f) where
#endif
proreturn :: forall (p :: * -> * -> *). Profunctor p => p :-> Tannen f p
proreturn = f (p a b) -> Tannen f p a b
forall {k} {k1} {k2} (f :: k -> *) (p :: k1 -> k2 -> k) (a :: k1)
(b :: k2).
f (p a b) -> Tannen f p a b
Tannen (f (p a b) -> Tannen f p a b)
-> (p a b -> f (p a b)) -> p a b -> Tannen f p a b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p a b -> f (p a b)
forall a. a -> f a
forall (m :: * -> *) a. Monad m => a -> m a
return
projoin :: forall (p :: * -> * -> *).
Profunctor p =>
Tannen f (Tannen f p) :-> Tannen f p
projoin (Tannen f (Tannen f p a b)
m) = f (p a b) -> Tannen f p a b
forall {k} {k1} {k2} (f :: k -> *) (p :: k1 -> k2 -> k) (a :: k1)
(b :: k2).
f (p a b) -> Tannen f p a b
Tannen (f (p a b) -> Tannen f p a b) -> f (p a b) -> Tannen f p a b
forall a b. (a -> b) -> a -> b
$ f (Tannen f p a b)
m f (Tannen f p a b) -> (Tannen f p a b -> f (p a b)) -> f (p a b)
forall a b. f a -> (a -> f b) -> f b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Tannen f p a b -> f (p a b)
forall {k1} {k2} {k3} (f :: k1 -> *) (p :: k2 -> k3 -> k1)
(a :: k2) (b :: k3).
Tannen f p a b -> f (p a b)
runTannen
instance ProfunctorMonad (Sum p) where
proreturn :: forall (p :: * -> * -> *). Profunctor p => p :-> Sum p p
proreturn = p a b -> Sum p p a b
forall {k} {k1} (p :: k -> k1 -> *) (q :: k -> k1 -> *) (a :: k)
(b :: k1).
q a b -> Sum p q a b
R2
projoin :: forall (p :: * -> * -> *).
Profunctor p =>
Sum p (Sum p p) :-> Sum p p
projoin (L2 p a b
p) = p a b -> Sum p p a b
forall {k} {k1} (p :: k -> k1 -> *) (q :: k -> k1 -> *) (a :: k)
(b :: k1).
p a b -> Sum p q a b
L2 p a b
p
projoin (R2 Sum p p a b
m) = Sum p p a b
m
class ProfunctorFunctor t => ProfunctorComonad t where
:: Profunctor p => t p :-> p
produplicate :: Profunctor p => t p :-> t (t p)
instance Comonad f => ProfunctorComonad (Tannen f) where
proextract :: forall (p :: * -> * -> *). Profunctor p => Tannen f p :-> p
proextract = f (p a b) -> p a b
forall a. f a -> a
forall (w :: * -> *) a. Comonad w => w a -> a
extract (f (p a b) -> p a b)
-> (Tannen f p a b -> f (p a b)) -> Tannen f p a b -> p a b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Tannen f p a b -> f (p a b)
forall {k1} {k2} {k3} (f :: k1 -> *) (p :: k2 -> k3 -> k1)
(a :: k2) (b :: k3).
Tannen f p a b -> f (p a b)
runTannen
produplicate :: forall (p :: * -> * -> *).
Profunctor p =>
Tannen f p :-> Tannen f (Tannen f p)
produplicate (Tannen f (p a b)
w) = f (Tannen f p a b) -> Tannen f (Tannen f p) a b
forall {k} {k1} {k2} (f :: k -> *) (p :: k1 -> k2 -> k) (a :: k1)
(b :: k2).
f (p a b) -> Tannen f p a b
Tannen (f (Tannen f p a b) -> Tannen f (Tannen f p) a b)
-> f (Tannen f p a b) -> Tannen f (Tannen f p) a b
forall a b. (a -> b) -> a -> b
$ (f (p a b) -> Tannen f p a b) -> f (p a b) -> f (Tannen f p a b)
forall a b. (f a -> b) -> f a -> f b
forall (w :: * -> *) a b. Comonad w => (w a -> b) -> w a -> w b
extend f (p a b) -> Tannen f p a b
forall {k} {k1} {k2} (f :: k -> *) (p :: k1 -> k2 -> k) (a :: k1)
(b :: k2).
f (p a b) -> Tannen f p a b
Tannen f (p a b)
w
instance ProfunctorComonad (Product p) where
proextract :: forall (p :: * -> * -> *). Profunctor p => Product p p :-> p
proextract (Pair p a b
_ p a b
q) = p a b
q
produplicate :: forall (p :: * -> * -> *).
Profunctor p =>
Product p p :-> Product p (Product p p)
produplicate pq :: Product p p a b
pq@(Pair p a b
p p a b
_) = p a b -> Product p p a b -> Product p (Product p p) a b
forall {k} {k1} (f :: k -> k1 -> *) (g :: k -> k1 -> *) (a :: k)
(b :: k1).
f a b -> g a b -> Product f g a b
Pair p a b
p Product p p a b
pq