{-# LANGUAGE CPP #-}
{-# LANGUAGE MultiParamTypeClasses #-}
#if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 710
{-# LANGUAGE Trustworthy #-}
#endif
module Control.Monad.Trans.Conts
(
Cont
, cont
, runCont
, Conts
, runConts
, conts
, ContsT(..)
, callCC
) where
import Prelude hiding (sequence)
#if __GLASGOW_HASKELL__ < 710
import Control.Applicative
#endif
import Control.Comonad
import Control.Monad.Trans.Class
import Control.Monad (ap)
import Data.Functor.Apply
import Data.Functor.Identity
type Cont r = ContsT r Identity Identity
cont :: ((a -> r) -> r) -> Cont r a
cont :: forall a r. ((a -> r) -> r) -> Cont r a
cont (a -> r) -> r
f = (Identity (a -> Identity r) -> Identity r)
-> ContsT r Identity Identity a
forall r (w :: * -> *) (m :: * -> *) a.
(w (a -> m r) -> m r) -> ContsT r w m a
ContsT ((Identity (a -> Identity r) -> Identity r)
-> ContsT r Identity Identity a)
-> (Identity (a -> Identity r) -> Identity r)
-> ContsT r Identity Identity a
forall a b. (a -> b) -> a -> b
$ \ (Identity a -> Identity r
k) -> r -> Identity r
forall a. a -> Identity a
Identity (r -> Identity r) -> r -> Identity r
forall a b. (a -> b) -> a -> b
$ (a -> r) -> r
f ((a -> r) -> r) -> (a -> r) -> r
forall a b. (a -> b) -> a -> b
$ Identity r -> r
forall a. Identity a -> a
runIdentity (Identity r -> r) -> (a -> Identity r) -> a -> r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Identity r
k
runCont :: Cont r a -> (a -> r) -> r
runCont :: forall r a. Cont r a -> (a -> r) -> r
runCont (ContsT Identity (a -> Identity r) -> Identity r
k) a -> r
f = Identity r -> r
forall a. Identity a -> a
runIdentity (Identity r -> r) -> Identity r -> r
forall a b. (a -> b) -> a -> b
$ Identity (a -> Identity r) -> Identity r
k (Identity (a -> Identity r) -> Identity r)
-> Identity (a -> Identity r) -> Identity r
forall a b. (a -> b) -> a -> b
$ (a -> Identity r) -> Identity (a -> Identity r)
forall a. a -> Identity a
Identity (r -> Identity r
forall a. a -> Identity a
Identity (r -> Identity r) -> (a -> r) -> a -> Identity r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> r
f)
type Conts r w = ContsT r w Identity
conts :: Functor w => (w (a -> r) -> r) -> Conts r w a
conts :: forall (w :: * -> *) a r.
Functor w =>
(w (a -> r) -> r) -> Conts r w a
conts w (a -> r) -> r
k = (w (a -> Identity r) -> Identity r) -> ContsT r w Identity a
forall r (w :: * -> *) (m :: * -> *) a.
(w (a -> m r) -> m r) -> ContsT r w m a
ContsT ((w (a -> Identity r) -> Identity r) -> ContsT r w Identity a)
-> (w (a -> Identity r) -> Identity r) -> ContsT r w Identity a
forall a b. (a -> b) -> a -> b
$ r -> Identity r
forall a. a -> Identity a
Identity (r -> Identity r)
-> (w (a -> Identity r) -> r) -> w (a -> Identity r) -> Identity r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. w (a -> r) -> r
k (w (a -> r) -> r)
-> (w (a -> Identity r) -> w (a -> r)) -> w (a -> Identity r) -> r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((a -> Identity r) -> a -> r) -> w (a -> Identity r) -> w (a -> r)
forall a b. (a -> b) -> w a -> w b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Identity r -> r
forall a. Identity a -> a
runIdentity (Identity r -> r) -> (a -> Identity r) -> a -> r
forall b c a. (b -> c) -> (a -> b) -> a -> c
.)
runConts :: Functor w => Conts r w a -> w (a -> r) -> r
runConts :: forall (w :: * -> *) r a.
Functor w =>
Conts r w a -> w (a -> r) -> r
runConts (ContsT w (a -> Identity r) -> Identity r
k) = Identity r -> r
forall a. Identity a -> a
runIdentity (Identity r -> r) -> (w (a -> r) -> Identity r) -> w (a -> r) -> r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. w (a -> Identity r) -> Identity r
k (w (a -> Identity r) -> Identity r)
-> (w (a -> r) -> w (a -> Identity r)) -> w (a -> r) -> Identity r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((a -> r) -> a -> Identity r) -> w (a -> r) -> w (a -> Identity r)
forall a b. (a -> b) -> w a -> w b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (r -> Identity r
forall a. a -> Identity a
Identity (r -> Identity r) -> (a -> r) -> a -> Identity r
forall b c a. (b -> c) -> (a -> b) -> a -> c
.)
newtype ContsT r w m a = ContsT { forall r (w :: * -> *) (m :: * -> *) a.
ContsT r w m a -> w (a -> m r) -> m r
runContsT :: w (a -> m r) -> m r }
instance Functor w => Functor (ContsT r w m) where
fmap :: forall a b. (a -> b) -> ContsT r w m a -> ContsT r w m b
fmap a -> b
f (ContsT w (a -> m r) -> m r
k) = (w (b -> m r) -> m r) -> ContsT r w m b
forall r (w :: * -> *) (m :: * -> *) a.
(w (a -> m r) -> m r) -> ContsT r w m a
ContsT ((w (b -> m r) -> m r) -> ContsT r w m b)
-> (w (b -> m r) -> m r) -> ContsT r w m b
forall a b. (a -> b) -> a -> b
$ w (a -> m r) -> m r
k (w (a -> m r) -> m r)
-> (w (b -> m r) -> w (a -> m r)) -> w (b -> m r) -> m r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((b -> m r) -> a -> m r) -> w (b -> m r) -> w (a -> m r)
forall a b. (a -> b) -> w a -> w b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((b -> m r) -> (a -> b) -> a -> m r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> b
f)
instance Comonad w => Apply (ContsT r w m) where
<.> :: forall a b.
ContsT r w m (a -> b) -> ContsT r w m a -> ContsT r w m b
(<.>) = ContsT r w m (a -> b) -> ContsT r w m a -> ContsT r w m b
forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap
instance Comonad w => Applicative (ContsT r w m) where
pure :: forall a. a -> ContsT r w m a
pure a
x = (w (a -> m r) -> m r) -> ContsT r w m a
forall r (w :: * -> *) (m :: * -> *) a.
(w (a -> m r) -> m r) -> ContsT r w m a
ContsT ((w (a -> m r) -> m r) -> ContsT r w m a)
-> (w (a -> m r) -> m r) -> ContsT r w m a
forall a b. (a -> b) -> a -> b
$ \w (a -> m r)
f -> w (a -> m r) -> a -> m r
forall a. w a -> a
forall (w :: * -> *) a. Comonad w => w a -> a
extract w (a -> m r)
f a
x
<*> :: forall a b.
ContsT r w m (a -> b) -> ContsT r w m a -> ContsT r w m b
(<*>) = ContsT r w m (a -> b) -> ContsT r w m a -> ContsT r w m b
forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap
instance Comonad w => Monad (ContsT r w m) where
return :: forall a. a -> ContsT r w m a
return = a -> ContsT r w m a
forall a. a -> ContsT r w m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
ContsT w (a -> m r) -> m r
k >>= :: forall a b.
ContsT r w m a -> (a -> ContsT r w m b) -> ContsT r w m b
>>= a -> ContsT r w m b
f = (w (b -> m r) -> m r) -> ContsT r w m b
forall r (w :: * -> *) (m :: * -> *) a.
(w (a -> m r) -> m r) -> ContsT r w m a
ContsT ((w (b -> m r) -> m r) -> ContsT r w m b)
-> (w (b -> m r) -> m r) -> ContsT r w m b
forall a b. (a -> b) -> a -> b
$ w (a -> m r) -> m r
k (w (a -> m r) -> m r)
-> (w (b -> m r) -> w (a -> m r)) -> w (b -> m r) -> m r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (w (b -> m r) -> a -> m r) -> w (b -> m r) -> w (a -> m r)
forall a b. (w a -> b) -> w a -> w b
forall (w :: * -> *) a b. Comonad w => (w a -> b) -> w a -> w b
extend (\w (b -> m r)
wa a
a -> ContsT r w m b -> w (b -> m r) -> m r
forall r (w :: * -> *) (m :: * -> *) a.
ContsT r w m a -> w (a -> m r) -> m r
runContsT (a -> ContsT r w m b
f a
a) w (b -> m r)
wa)
callCC :: Comonad w => ((a -> ContsT r w m b) -> ContsT r w m a) -> ContsT r w m a
callCC :: forall (w :: * -> *) a r (m :: * -> *) b.
Comonad w =>
((a -> ContsT r w m b) -> ContsT r w m a) -> ContsT r w m a
callCC (a -> ContsT r w m b) -> ContsT r w m a
f = (w (a -> m r) -> m r) -> ContsT r w m a
forall r (w :: * -> *) (m :: * -> *) a.
(w (a -> m r) -> m r) -> ContsT r w m a
ContsT ((w (a -> m r) -> m r) -> ContsT r w m a)
-> (w (a -> m r) -> m r) -> ContsT r w m a
forall a b. (a -> b) -> a -> b
$ \w (a -> m r)
wamr -> ContsT r w m a -> w (a -> m r) -> m r
forall r (w :: * -> *) (m :: * -> *) a.
ContsT r w m a -> w (a -> m r) -> m r
runContsT ((a -> ContsT r w m b) -> ContsT r w m a
f (\a
a -> (w (b -> m r) -> m r) -> ContsT r w m b
forall r (w :: * -> *) (m :: * -> *) a.
(w (a -> m r) -> m r) -> ContsT r w m a
ContsT ((w (b -> m r) -> m r) -> ContsT r w m b)
-> (w (b -> m r) -> m r) -> ContsT r w m b
forall a b. (a -> b) -> a -> b
$ \w (b -> m r)
_ -> w (a -> m r) -> a -> m r
forall a. w a -> a
forall (w :: * -> *) a. Comonad w => w a -> a
extract w (a -> m r)
wamr a
a)) w (a -> m r)
wamr
instance Comonad w => MonadTrans (ContsT r w) where
lift :: forall (m :: * -> *) a. Monad m => m a -> ContsT r w m a
lift m a
m = (w (a -> m r) -> m r) -> ContsT r w m a
forall r (w :: * -> *) (m :: * -> *) a.
(w (a -> m r) -> m r) -> ContsT r w m a
ContsT ((w (a -> m r) -> m r) -> ContsT r w m a)
-> (w (a -> m r) -> m r) -> ContsT r w m a
forall a b. (a -> b) -> a -> b
$ w (m r) -> m r
forall a. w a -> a
forall (w :: * -> *) a. Comonad w => w a -> a
extract (w (m r) -> m r)
-> (w (a -> m r) -> w (m r)) -> w (a -> m r) -> m r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((a -> m r) -> m r) -> w (a -> m r) -> w (m r)
forall a b. (a -> b) -> w a -> w b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (m a
m m a -> (a -> m r) -> m r
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>=)