Skip to content

2.8 The unit type

This is a literate Rzk file:

#lang rzk-1

For Unit type, uniqueness principle is built-in. That is, for any x, y : Unit, we have refl : x = y

Theorem 2.8.1.

For any \(x, y : \mathbb{1}\), we have \((x = y) \simeq \mathbb{1}\).

#def paths-in-unit-equiv-unit
    ( x y : Unit)
  : equivalence (x = y) Unit
    -- provide a function - a constant map to unit
  :=
  ( \ (p : x = y) → unit
  , ( -- provide right inverse - a constant map to refl_{unit}
      ( \ (u : Unit) → refl_{unit}
      , -- prove that composition is homotopical to id_Unit
        \ (u : Unit) → refl)
    , -- provide left inverse - a constant map to refl_{unit}
      ( \ (u : Unit) → refl_{unit}
      , -- prove that composition is homotopical to id_{x = y}; use path induction on p
        path-ind Unit
        ( \ x' y' p' refl_{unit} = p')
        ( \ x' refl)
        x y)))